Suppr超能文献

增长网络模型中的特征与异质性。

Features and heterogeneities in growing network models.

作者信息

Ferretti Luca, Cortelezzi Michele, Yang Bin, Marmorini Giacomo, Bianconi Ginestra

机构信息

Centre de Recerca en AgriGenòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066110. doi: 10.1103/PhysRevE.85.066110. Epub 2012 Jun 8.

Abstract

Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an "effective fitness" for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.

摘要

从万维网到生物网络,许多复杂网络在生长时都会考虑节点的异质性特征。节点的特征可能是一个离散量,比如URL文档的分类,如个人页面、主题网站、新闻、博客、搜索引擎、社交网络等,或者是功能模块中基因的分类。此外,节点的特征也可以是一个连续变量,比如节点在嵌入空间中的位置。为了考虑这些特性,在本文中,我们对具有优先连接的生长网络模型进行了推广,该模型包括了节点异质性特征的影响。异质性的主要影响是每类节点出现了“有效适应度”,它决定了节点获取新链接的速率。度分布呈现出与适应度模型类似的多尺度行为。只要通过有效优先连接来分配链接,这个特性对于模型的变化就是稳健的。除了度分布,在本文中我们还对模型的其他相关特性进行了全面刻画。我们评估了聚类系数,发现对于大网络规模它会消失,这是与巴拉巴西 - 阿尔伯特模型共有的一个特性。这类模型中也存在负度相关性,以及特征之间的非平凡混合模式。因此我们得出结论,小聚类系数和异配混合都是一般生长网络中优先连接机制的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验