Shao Jia, Buldyrev Sergey V, Braunstein Lidia A, Havlin Shlomo, Stanley H Eugene
Department of Physics and Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 2):036105. doi: 10.1103/PhysRevE.80.036105. Epub 2009 Sep 9.
We define shell l in a network as the set of nodes at distance l with respect to a given node and define rl as the fraction of nodes outside shell l . In a transport process, information or disease usually diffuses from a random node and reach nodes shell after shell. Thus, understanding the shell structure is crucial for the study of the transport property of networks. We study the statistical properties of the shells of a randomly chosen node. For a randomly connected network with given degree distribution, we derive analytically the degree distribution and average degree of the nodes residing outside shell l as a function of rl. Further, we find that rl follows an iterative functional form rl=phi(rl-1) , where phi is expressed in terms of the generating function of the original degree distribution of the network. Our results can explain the power-law distribution of the number of nodes Bl found in shells with l larger than the network diameter d , which is the average distance between all pairs of nodes. For real-world networks the theoretical prediction of rl deviates from the empirical rl. We introduce a network correlation function c(rl) identical with rl/phi(rl-1) to characterize the correlations in the network, where rl is the empirical value and phi(rl-1) is the theoretical prediction. c(rl)=1 indicates perfect agreement between empirical results and theory. We apply c(rl) to several model and real-world networks. We find that the networks fall into two distinct classes: (i) a class of poorly connected networks with c(rl)>1 , where a larger (smaller) fraction of nodes resides outside (inside) distance l from a given node than in randomly connected networks with the same degree distributions. Examples include the Watts-Strogatz model and networks characterizing human collaborations such as citation networks and the actor collaboration network; (ii) a class of well-connected networks with c(rl)<1 . Examples include the Barabási-Albert model and the autonomous system Internet network.
我们将网络中的壳层(l)定义为相对于给定节点距离为(l)的节点集合,并将(r_l)定义为壳层(l)之外的节点比例。在传输过程中,信息或疾病通常从一个随机节点扩散开来,逐壳层到达节点。因此,理解壳层结构对于研究网络的传输特性至关重要。我们研究随机选择节点的壳层的统计特性。对于具有给定度分布的随机连接网络,我们通过解析推导得出壳层(l)之外节点的度分布和平均度作为(r_l)的函数。此外,我们发现(r_l)遵循迭代函数形式(r_l = \phi(r_{l - 1})),其中(\phi)根据网络原始度分布的生成函数表示。我们的结果可以解释在壳层(l)((l)大于网络直径(d),即所有节点对之间的平均距离)中发现的节点数量(B_l)的幂律分布。对于现实世界的网络,(r_l)的理论预测与经验值(r_l)存在偏差。我们引入一个与(r_l / \phi(r_{l - 1}))相同的网络相关函数(c(r_l))来表征网络中的相关性,其中(r_l)是经验值,(\phi(r_{l - 1}))是理论预测值。(c(r_l) = 1)表示经验结果与理论完全一致。我们将(c(r_l))应用于几个模型网络和现实世界网络。我们发现这些网络分为两个不同的类别:(i)一类连接性较差的网络,(c(r_l) > 1),在这类网络中,相对于具有相同度分布的随机连接网络,距离给定节点距离(l)之外(之内)的节点比例更大(更小)。示例包括瓦茨 - 斯托加茨模型以及表征人类合作的网络,如引文网络和演员合作网络;(ii)一类连接性良好的网络,(c(r_l) < 1)。示例包括巴拉巴西 - 阿尔伯特模型和自治系统互联网网络。