Wang Mei-Cheng, Li Shanshan
Department of Biostatistics Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
Biometrics. 2012 Dec;68(4):1207-18. doi: 10.1111/j.1541-0420.2012.01783.x. Epub 2012 Sep 24.
This article considers receiver operating characteristic (ROC) analysis for bivariate marker measurements. The research interest is to extend tools and rules from univariate marker to bivariate marker setting for evaluating predictive accuracy of markers using a tree-based classification rule. Using an and-or classifier, an ROC function together with a weighted ROC function (WROC) and their conjugate counterparts are proposed for examining the performance of bivariate markers. The proposed functions evaluate the performance of and-or classifiers among all possible combinations of marker values, and are ideal measures for understanding the predictability of biomarkers in target population. Specific features of ROC and WROC functions and other related statistics are discussed in comparison with those familiar properties for univariate marker. Nonparametric methods are developed for estimating ROC-related functions (partial) area under curve and concordance probability. With emphasis on average performance of markers, the proposed procedures and inferential results are useful for evaluating marker predictability based on a single or bivariate marker (or test) measurements with different choices of markers, and for evaluating different and-or combinations in classifiers. The inferential results developed in this article also extend to multivariate markers with a sequence of arbitrarily combined and-or classifier.
本文考虑了双变量标志物测量的受试者工作特征(ROC)分析。研究兴趣在于将单变量标志物的工具和规则扩展到双变量标志物设置,以便使用基于树的分类规则评估标志物的预测准确性。使用与或分类器,提出了一个ROC函数以及一个加权ROC函数(WROC)及其共轭对应函数,用于检验双变量标志物的性能。所提出的函数在标志物值的所有可能组合中评估与或分类器的性能,并且是理解目标人群中生物标志物可预测性的理想度量。与单变量标志物的那些熟悉特性相比,讨论了ROC和WROC函数以及其他相关统计量的具体特征。开发了非参数方法来估计ROC相关函数(部分)曲线下面积和一致性概率。重点关注标志物的平均性能,所提出的程序和推断结果对于基于具有不同标志物选择的单变量或双变量标志物(或测试)测量来评估标志物可预测性,以及评估分类器中的不同与或组合是有用的。本文中开发的推断结果也扩展到具有一系列任意组合的与或分类器的多变量标志物。