Suppr超能文献

双变量标志物测量与ROC分析。

Bivariate marker measurements and ROC analysis.

作者信息

Wang Mei-Cheng, Li Shanshan

机构信息

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.

出版信息

Biometrics. 2012 Dec;68(4):1207-18. doi: 10.1111/j.1541-0420.2012.01783.x. Epub 2012 Sep 24.

Abstract

This article considers receiver operating characteristic (ROC) analysis for bivariate marker measurements. The research interest is to extend tools and rules from univariate marker to bivariate marker setting for evaluating predictive accuracy of markers using a tree-based classification rule. Using an and-or classifier, an ROC function together with a weighted ROC function (WROC) and their conjugate counterparts are proposed for examining the performance of bivariate markers. The proposed functions evaluate the performance of and-or classifiers among all possible combinations of marker values, and are ideal measures for understanding the predictability of biomarkers in target population. Specific features of ROC and WROC functions and other related statistics are discussed in comparison with those familiar properties for univariate marker. Nonparametric methods are developed for estimating ROC-related functions (partial) area under curve and concordance probability. With emphasis on average performance of markers, the proposed procedures and inferential results are useful for evaluating marker predictability based on a single or bivariate marker (or test) measurements with different choices of markers, and for evaluating different and-or combinations in classifiers. The inferential results developed in this article also extend to multivariate markers with a sequence of arbitrarily combined and-or classifier.

摘要

本文考虑了双变量标志物测量的受试者工作特征(ROC)分析。研究兴趣在于将单变量标志物的工具和规则扩展到双变量标志物设置,以便使用基于树的分类规则评估标志物的预测准确性。使用与或分类器,提出了一个ROC函数以及一个加权ROC函数(WROC)及其共轭对应函数,用于检验双变量标志物的性能。所提出的函数在标志物值的所有可能组合中评估与或分类器的性能,并且是理解目标人群中生物标志物可预测性的理想度量。与单变量标志物的那些熟悉特性相比,讨论了ROC和WROC函数以及其他相关统计量的具体特征。开发了非参数方法来估计ROC相关函数(部分)曲线下面积和一致性概率。重点关注标志物的平均性能,所提出的程序和推断结果对于基于具有不同标志物选择的单变量或双变量标志物(或测试)测量来评估标志物可预测性,以及评估分类器中的不同与或组合是有用的。本文中开发的推断结果也扩展到具有一系列任意组合的与或分类器的多变量标志物。

相似文献

1
Bivariate marker measurements and ROC analysis.双变量标志物测量与ROC分析。
Biometrics. 2012 Dec;68(4):1207-18. doi: 10.1111/j.1541-0420.2012.01783.x. Epub 2012 Sep 24.
2
ROC analysis for multiple markers with tree-based classification.基于树分类的多个标志物的ROC分析
Lifetime Data Anal. 2013 Apr;19(2):257-77. doi: 10.1007/s10985-012-9233-5. Epub 2012 Oct 10.
4
Evaluating prognostic accuracy of biomarkers under competing risk.评估竞争风险下生物标志物的预后准确性。
Biometrics. 2012 Jun;68(2):388-96. doi: 10.1111/j.1541-0420.2011.01671.x. Epub 2011 Dec 7.
7
Estimation of the ROC curve under verification bias.验证性偏倚下ROC曲线的估计
Biom J. 2009 Jun;51(3):475-90. doi: 10.1002/bimj.200800128.

引用本文的文献

1
Performance of diagnostic tests based on continuous bivariate markers.基于连续双变量标志物的诊断试验性能
J Appl Stat. 2022 Oct 26;51(3):497-514. doi: 10.1080/02664763.2022.2137478. eCollection 2024.
3
ROC analysis for multiple markers with tree-based classification.基于树分类的多个标志物的ROC分析
Lifetime Data Anal. 2013 Apr;19(2):257-77. doi: 10.1007/s10985-012-9233-5. Epub 2012 Oct 10.

本文引用的文献

3
Using relative utility curves to evaluate risk prediction.使用相对效用曲线评估风险预测。
J R Stat Soc Ser A Stat Soc. 2009 Oct 1;172(4):729-748. doi: 10.1111/j.1467-985X.2009.00592.x.
5
Survival model predictive accuracy and ROC curves.生存模型预测准确性和ROC曲线。
Biometrics. 2005 Mar;61(1):92-105. doi: 10.1111/j.0006-341X.2005.030814.x.
6
Partial AUC estimation and regression.部分曲线下面积估计与回归
Biometrics. 2003 Sep;59(3):614-23. doi: 10.1111/1541-0420.00071.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验