Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA.
Biometrics. 2022 Mar;78(1):128-140. doi: 10.1111/biom.13409. Epub 2020 Dec 22.
In biomedical practices, multiple biomarkers are often combined using a prespecified classification rule with tree structure for diagnostic decisions. The classification structure and cutoff point at each node of a tree are usually chosen on an ad hoc basis, depending on decision makers' experience. There is a lack of analytical approaches that lead to optimal prediction performance, and that guide the choice of optimal cutoff points in a pre-specified classification tree. In this paper, we propose to search for and estimate the optimal decision rule through an approach of rank correlation maximization. The proposed method is flexible, theoretically sound, and computationally feasible when many biomarkers are available for classification or prediction. Using the proposed approach, for a prespecified tree-structured classification rule, we can guide the choice of optimal cutoff points at tree nodes and estimate optimal prediction performance from multiple biomarkers combined.
在生物医学实践中,通常使用具有树结构的预定分类规则来组合多个生物标志物,以进行诊断决策。树中每个节点的分类结构和截止点通常是根据决策者的经验临时选择的。缺乏能够实现最佳预测性能的分析方法,也缺乏在预定分类树中指导选择最佳截止点的方法。在本文中,我们提出通过最大化秩相关的方法来搜索和估计最优决策规则。当有许多生物标志物可用于分类或预测时,该方法具有灵活性、理论上的合理性和计算上的可行性。使用所提出的方法,对于预定的树状分类规则,我们可以指导树节点处的最佳截止点选择,并从组合的多个生物标志物中估计最佳预测性能。