INAC/SP2M, Commissariat à l'Energie Atomique et aux Energies Alternatives and Université Joseph Fourier, F-38054 Grenoble, France.
Phys Rev Lett. 2012 Sep 7;109(10):106603. doi: 10.1103/PhysRevLett.109.106603.
Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. In this Letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced to a value compatible with the spin diffusion model. More interestingly, the observation in this regime of inverse spin Hall effect in germanium generated by spin pumping and the modulation of the spin signal by a gate voltage clearly demonstrate spin accumulation in the germanium conduction band.
将电子自旋注入半导体为探索自旋物理学领域的新现象和新一代自旋电子器件铺平了道路。然而,在从磁性隧道结到半导体的自旋注入机制中,界面态的确切作用仍存在争议。在这封信中,我们证明了在 n-Ge 中,自旋积累到界面态再到导带中的自旋注入的明显转变。我们观察到低温下由于自旋积累到界面态导致自旋信号放大,然后在 200 K 到室温之间明显转变为导带中的自旋注入。在这个区域,自旋信号减少到与自旋扩散模型兼容的值。更有趣的是,在这个区域观察到由自旋泵浦产生的反向自旋霍尔效应和栅极电压对自旋信号的调制,这清楚地证明了自旋在锗导带中的积累。