Perotti Juan I, Billoni Orlando V
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba and Instituto de Física Enrique Gaviola, IFEG-CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011120. doi: 10.1103/PhysRevE.86.011120. Epub 2012 Jul 19.
In this work we study the problem of targeting signals in networks using entropy information measurements to quantify the cost of targeting. We introduce a penalization rule that imposes a restriction on the long paths and therefore focuses the signal to the target. By this scheme we go continuously from fully random walkers to walkers biased to the target. We found that the optimal degree of penalization is mainly determined by the topology of the network. By analyzing several examples, we have found that a small amount of penalization reduces considerably the typical walk length, and from this we conclude that a network can be efficiently navigated with restricted information.
在这项工作中,我们研究了利用熵信息测量来量化目标定位成本,以在网络中定位信号的问题。我们引入了一种惩罚规则,该规则对长路径施加限制,从而将信号聚焦到目标上。通过这种方案,我们从完全随机游走者连续过渡到偏向目标的游走者。我们发现,最优惩罚程度主要由网络拓扑结构决定。通过分析几个例子,我们发现少量惩罚会显著减少典型游走长度,据此我们得出结论,利用受限信息可以有效地在网络中导航。