Swanson Charles E, Elzey John W, Hershberger Robert E, Donnelly Russell J, Pfotenhauer John
Department of Physics, University of Oregon, Eugene, OR 97403, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016103. doi: 10.1103/PhysRevE.86.016103. Epub 2012 Jul 6.
We discuss the possibility of capturing carbon dioxide from the flue gas of a coal-fired electrical power plant by cryogenically desublimating the carbon dioxide and then preparing it for transport in a pipeline to a sequestration site. Various other means have been proposed to accomplish the same goal. The problem discussed here is to estimate the "energy penalty" or "parasitic energy loss,' defined as the fraction of electrical output that will be needed to provide the refrigeration and that will then not be deliverable. We compute the energy loss (7.9-9.2% at 1 atm) based on perfect Carnot efficiency and estimate the achievable parasitic energy loss (22-26% at 1 atm) by incorporating the published coefficient of performance values for appropriately sized refrigeration or liquefaction cycles at the relevant temperatures. The analyses at 1 atm represent a starting point for future analyses using elevated pressures.
我们讨论了通过将二氧化碳低温凝华,然后将其制备成可通过管道输送至封存地点的形式,从燃煤发电厂的烟道气中捕获二氧化碳的可能性。为实现同一目标,人们还提出了各种其他方法。这里讨论的问题是估算“能量损失”或“寄生能量损耗”,其定义为用于制冷而无法输出的那部分电力输出占比。我们基于理想卡诺效率计算能量损失(1个大气压下为7.9 - 9.2%),并通过纳入已发表的在相关温度下适当规模制冷或液化循环的性能系数值,估算可实现的寄生能量损失(1个大气压下为22 - 26%)。1个大气压下的分析是未来使用更高压力进行分析的起点。