Baggaley Andrew W, Sarson Graeme R, Shukurov Anvar, Boys Richard J, Golightly Andrew
School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, England, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016105. doi: 10.1103/PhysRevE.86.016105. Epub 2012 Jul 10.
We consider a wave-front model for the spread of neolithic culture across Europe, and use Bayesian inference techniques to provide estimates for the parameters within this model, as constrained by radiocarbon data from southern and western Europe. Our wave-front model allows for both an isotropic background spread (incorporating the effects of local geography) and a localized anisotropic spread associated with major waterways. We introduce an innovative numerical scheme to track the wave front, and use Gaussian process emulators to further increase the efficiency of our model, thereby making Markov chain Monte Carlo methods practical. We allow for uncertainty in the fit of our model, and discuss the inferred distribution of the parameter specifying this uncertainty, along with the distributions of the parameters of our wave-front model. We subsequently use predictive distributions, taking account of parameter uncertainty, to identify radiocarbon sites which do not agree well with our model. These sites may warrant further archaeological study or motivate refinements to the model.
我们考虑了一个新石器时代文化在欧洲传播的波前模型,并使用贝叶斯推理技术来估计该模型中的参数,这些参数受来自南欧和西欧的放射性碳数据的约束。我们的波前模型既考虑了各向同性的背景传播(纳入了当地地理环境的影响),也考虑了与主要水道相关的局部各向异性传播。我们引入了一种创新的数值方案来追踪波前,并使用高斯过程模拟器进一步提高模型的效率,从而使马尔可夫链蒙特卡罗方法切实可行。我们考虑了模型拟合中的不确定性,并讨论了指定此不确定性的参数的推断分布,以及我们波前模型参数的分布。随后,我们使用预测分布,考虑到参数的不确定性,来识别与我们模型不太相符的放射性碳遗址。这些遗址可能需要进一步的考古研究,或者促使对模型进行改进。