Suppr超能文献

利用指数和贝塔-泊松剂量反应模型的理论基础,通过马尔可夫链蒙特卡罗方法来量化参数不确定性。

Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.

机构信息

Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 160 Research Lane, Guelph, Ontario N1G 5E2, Canada.

出版信息

Risk Anal. 2013 Sep;33(9):1677-93. doi: 10.1111/risa.12006. Epub 2013 Jan 11.

Abstract

Dose-response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose-response model parameters are estimated using limited epidemiological data is rarely quantified. Second-order risk characterization approaches incorporating uncertainty in dose-response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta-Poisson dose-response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta-Poisson dose-response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta-Poisson dose-response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta-Poisson model are proposed, and simple algorithms to evaluate actual beta-Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta-Poisson dose-response model parameters is attributable to the absence of low-dose data. This region includes beta-Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility.

摘要

剂量反应模型是定量微生物风险评估中暴露评估和计算风险值之间的重要环节,但是由于剂量反应模型参数是使用有限的流行病学数据估计的,因此计算风险中固有的不确定性很少被量化。包含剂量反应模型参数不确定性的二阶风险特征描述方法可以通过分离变异性和不确定性来量化计算风险中的不确定性,从而为决策者提供更完整的信息。因此,这项工作的目的是开发使用贝叶斯定理和马尔可夫链蒙特卡罗(在 OpenBUGS 中)从描述指数和贝塔-泊松剂量反应模型参数不确定性的后验分布中抽样的程序。贝塔-泊松剂量反应模型的理论起源用于确定模型的分解版本,该版本无需评估库默合流超几何函数即可进行贝叶斯分析。本文还确立了贝塔-泊松剂量反应模型中的贝塔分布不能解决个体病原体之间的变异问题,提出了验证使用传统贝塔-泊松模型近似值的标准,并研究了评估实际贝塔-泊松感染概率的简单算法。所开发的 MCMC 程序应用于案例研究数据集的分析,结果表明,贝塔-泊松剂量反应模型参数后验分布的一个重要区域归因于缺乏低剂量数据。该区域包括传统近似值特别无效的贝塔-泊松模型,其中许多贝塔分布具有极端形状,难以令人置信。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验