Choi Sangbum, Huang Xuelin
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Biometrics. 2012 Dec;68(4):1126-35. doi: 10.1111/j.1541-0420.2012.01784.x. Epub 2012 Sep 24.
We propose a semiparametrically efficient estimation of a broad class of transformation regression models for nonproportional hazards data. Classical transformation models are to be viewed from a frailty model paradigm, and the proposed method provides a unified approach that is valid for both continuous and discrete frailty models. The proposed models are shown to be flexible enough to model long-term follow-up survival data when the treatment effect diminishes over time, a case for which the PH or proportional odds assumption is violated, or a situation in which a substantial proportion of patients remains cured after treatment. Estimation of the link parameter in frailty distribution, considered to be unknown and possibly dependent on a time-independent covariates, is automatically included in the proposed methods. The observed information matrix is computed to evaluate the variances of all the parameter estimates. Our likelihood-based approach provides a natural way to construct simple statistics for testing the PH and proportional odds assumptions for usual survival data or testing the short- and long-term effects for survival data with a cure fraction. Simulation studies demonstrate that the proposed inference procedures perform well in realistic settings. Applications to two medical studies are provided.
我们提出了一种半参数有效估计方法,用于非比例风险数据的一大类变换回归模型。经典变换模型应从脆弱模型范式的角度来看待,并且所提出的方法提供了一种统一的方法,该方法对连续和离散脆弱模型均有效。当治疗效果随时间减弱、违反了PH或比例优势假设的情况,或者在治疗后很大一部分患者保持治愈状态的情况下,所提出的模型显示出足够的灵活性来对长期随访生存数据进行建模。在所提出的方法中自动包含了对脆弱分布中链接参数的估计,该参数被认为是未知的,并且可能依赖于与时间无关的协变量。计算观测信息矩阵以评估所有参数估计的方差。我们基于似然的方法提供了一种自然的方式来构建简单统计量,用于检验常规生存数据的PH和比例优势假设,或检验具有治愈比例的生存数据的短期和长期效应。模拟研究表明,所提出的推断程序在实际环境中表现良好。提供了两个医学研究的应用。