Suppr超能文献

用于非比例风险生存数据的一类半参数变换脆弱模型。

A general class of semiparametric transformation frailty models for nonproportional hazards survival data.

作者信息

Choi Sangbum, Huang Xuelin

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Biometrics. 2012 Dec;68(4):1126-35. doi: 10.1111/j.1541-0420.2012.01784.x. Epub 2012 Sep 24.

Abstract

We propose a semiparametrically efficient estimation of a broad class of transformation regression models for nonproportional hazards data. Classical transformation models are to be viewed from a frailty model paradigm, and the proposed method provides a unified approach that is valid for both continuous and discrete frailty models. The proposed models are shown to be flexible enough to model long-term follow-up survival data when the treatment effect diminishes over time, a case for which the PH or proportional odds assumption is violated, or a situation in which a substantial proportion of patients remains cured after treatment. Estimation of the link parameter in frailty distribution, considered to be unknown and possibly dependent on a time-independent covariates, is automatically included in the proposed methods. The observed information matrix is computed to evaluate the variances of all the parameter estimates. Our likelihood-based approach provides a natural way to construct simple statistics for testing the PH and proportional odds assumptions for usual survival data or testing the short- and long-term effects for survival data with a cure fraction. Simulation studies demonstrate that the proposed inference procedures perform well in realistic settings. Applications to two medical studies are provided.

摘要

我们提出了一种半参数有效估计方法,用于非比例风险数据的一大类变换回归模型。经典变换模型应从脆弱模型范式的角度来看待,并且所提出的方法提供了一种统一的方法,该方法对连续和离散脆弱模型均有效。当治疗效果随时间减弱、违反了PH或比例优势假设的情况,或者在治疗后很大一部分患者保持治愈状态的情况下,所提出的模型显示出足够的灵活性来对长期随访生存数据进行建模。在所提出的方法中自动包含了对脆弱分布中链接参数的估计,该参数被认为是未知的,并且可能依赖于与时间无关的协变量。计算观测信息矩阵以评估所有参数估计的方差。我们基于似然的方法提供了一种自然的方式来构建简单统计量,用于检验常规生存数据的PH和比例优势假设,或检验具有治愈比例的生存数据的短期和长期效应。模拟研究表明,所提出的推断程序在实际环境中表现良好。提供了两个医学研究的应用。

相似文献

1
A general class of semiparametric transformation frailty models for nonproportional hazards survival data.
Biometrics. 2012 Dec;68(4):1126-35. doi: 10.1111/j.1541-0420.2012.01784.x. Epub 2012 Sep 24.
2
A class of semiparametric transformation models for survival data with a cured proportion.
Lifetime Data Anal. 2014 Jul;20(3):369-86. doi: 10.1007/s10985-013-9268-2. Epub 2013 Jun 13.
3
Efficient semiparametric estimation of short-term and long-term hazard ratios with right-censored data.
Biometrics. 2013 Dec;69(4):840-9. doi: 10.1111/biom.12097. Epub 2013 Nov 4.
4
Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events.
Biometrics. 2009 Sep;65(3):746-52. doi: 10.1111/j.1541-0420.2008.01126.x. Epub 2008 Sep 29.
5
A positive stable frailty model for clustered failure time data with covariate-dependent frailty.
Biometrics. 2011 Mar;67(1):8-17. doi: 10.1111/j.1541-0420.2010.01444.x.
6
Nonproportional hazards and unobserved heterogeneity in clustered survival data: When can we tell the difference?
Stat Med. 2019 Aug 15;38(18):3405-3420. doi: 10.1002/sim.8171. Epub 2019 May 3.
7
A flexible-hazards cure model with application to patients with soft tissue sarcoma.
Stat Med. 2022 Dec 20;41(29):5698-5714. doi: 10.1002/sim.9588. Epub 2022 Sep 27.
8
A class of semiparametric cure models with current status data.
Lifetime Data Anal. 2019 Jan;25(1):26-51. doi: 10.1007/s10985-018-9420-0. Epub 2018 Feb 8.
9
Semiparametric competing risks regression under interval censoring using the R package intccr.
Comput Methods Programs Biomed. 2019 May;173:167-176. doi: 10.1016/j.cmpb.2019.03.002. Epub 2019 Mar 8.
10
Long-term frailty modeling using a non-proportional hazards model: Application with a melanoma dataset.
Stat Methods Med Res. 2020 Aug;29(8):2100-2118. doi: 10.1177/0962280219883905. Epub 2019 Nov 6.

引用本文的文献

1
Estimating short-term and long-term survival in rectal cancer patients using cure model.
J Family Med Prim Care. 2022 Sep;11(9):5615-5620. doi: 10.4103/jfmpc.jfmpc_510_22. Epub 2022 Oct 14.

本文引用的文献

1
Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models.
J Am Stat Assoc. 2003 Dec 1;98(464):1063-1078. doi: 10.1198/01622145030000001007.
3
A nonparametric mixture model for cure rate estimation.
Biometrics. 2000 Mar;56(1):237-43. doi: 10.1111/j.0006-341x.2000.00237.x.
4
Estimation in a Cox proportional hazards cure model.
Biometrics. 2000 Mar;56(1):227-36. doi: 10.1111/j.0006-341x.2000.00227.x.
5
Analysis of survival data by the proportional odds model.
Stat Med. 1983 Apr-Jun;2(2):273-7. doi: 10.1002/sim.4780020223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验