Suppr超能文献

使用 R 包 intccr 进行区间 censoring 下的半参数竞争风险回归。

Semiparametric competing risks regression under interval censoring using the R package intccr.

机构信息

Department of Biostatistics Richard M. Fairbanks School of Public Health Indiana University School of Medicine 410 W. 10th Street Suite 3000 Indianapolis, IN 46202, United States of America.

出版信息

Comput Methods Programs Biomed. 2019 May;173:167-176. doi: 10.1016/j.cmpb.2019.03.002. Epub 2019 Mar 8.

Abstract

BACKGROUND AND OBJECTIVE

Competing risk data are frequently interval-censored in real-world applications, that is, the exact event time is not precisely observed but is only known to lie between two time points such as clinic visits. This type of data requires special handling because the actual event times are unknown. To deal with this problem we have developed an easy-to-use open-source statistical software.

METHODS

An approach to perform semiparametric regression analysis of the cumulative incidence function with interval-censored competing risks data is the sieve maximum likelihood method based on B-splines. An important feature of this approach is that it does not impose restrictive parametric assumptions. Also, this methodology provides semiparametrically efficient estimates. Implementation of this methodology can be easily performed using our new R package intccr.

RESULTS

The R package intccr performs semiparametric regression analysis of the cumulative incidence function based on interval-censored competing risks data. It supports a large class of models including the proportional odds and the Fine-Gray proportional subdistribution hazards model as special cases. It also provides the estimated cumulative incidence functions for a particular combination of covariate values. The package also provides some data management functionality to handle data sets which are in a long format involving multiple lines of data per subject.

CONCLUSIONS

The R package intccr provides a convenient and flexible software for the analysis of the cumulative incidence function based on interval-censored competing risks data.

摘要

背景与目的

在实际应用中,竞争风险数据经常是区间删失的,也就是说,确切的事件时间不是精确观察到的,而只是知道在两次就诊等时间点之间。这种类型的数据需要特殊处理,因为实际的事件时间是未知的。为了解决这个问题,我们开发了一个易于使用的开源统计软件。

方法

一种处理区间删失竞争风险数据累积发生率函数的半参数回归分析方法是基于 B 样条的筛最大似然法。这种方法的一个重要特点是它不施加限制性的参数假设。此外,该方法提供了半参数有效的估计。这种方法的实现可以使用我们的新 R 包 intccr 轻松完成。

结果

R 包 intccr 对基于区间删失竞争风险数据的累积发生率函数进行半参数回归分析。它支持一大类模型,包括比例优势和 Fine-Gray 比例亚分布危害模型作为特例。它还提供了特定协变量值组合的估计累积发生率函数。该包还提供了一些数据管理功能,用于处理涉及每个主体多行数据的长格式数据集。

结论

R 包 intccr 为基于区间删失竞争风险数据的累积发生率函数分析提供了一个方便灵活的软件。

相似文献

10
geecure: An R-package for marginal proportional hazards mixture cure models.geecure:用于边缘比例风险混合治愈模型的 R 包。
Comput Methods Programs Biomed. 2018 Jul;161:115-124. doi: 10.1016/j.cmpb.2018.04.017. Epub 2018 Apr 17.

引用本文的文献

本文引用的文献

6
Practical methods for competing risks data: a review.竞争风险数据的实用方法:综述。
Stat Methods Med Res. 2012 Jun;21(3):257-72. doi: 10.1177/0962280210394479. Epub 2011 Jan 7.
9
Parametric regression on cumulative incidence function.累积发病率函数的参数回归
Biostatistics. 2007 Apr;8(2):184-96. doi: 10.1093/biostatistics/kxj040. Epub 2006 Apr 24.
10
Regression modeling of competing crude failure probabilities.竞争性粗失败概率的回归建模。
Biostatistics. 2001 Mar;2(1):85-97. doi: 10.1093/biostatistics/2.1.85.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验