Suppr超能文献

一种用于具有协变量依赖脆弱性的聚类失效时间数据的正稳定脆弱性模型。

A positive stable frailty model for clustered failure time data with covariate-dependent frailty.

作者信息

Liu Dandan, Kalbfleisch John D, Schaubel Douglas E

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109-2029, USA.

出版信息

Biometrics. 2011 Mar;67(1):8-17. doi: 10.1111/j.1541-0420.2010.01444.x.

Abstract

Summary In this article, we propose a positive stable shared frailty Cox model for clustered failure time data where the frailty distribution varies with cluster-level covariates. The proposed model accounts for covariate-dependent intracluster correlation and permits both conditional and marginal inferences. We obtain marginal inference directly from a marginal model, then use a stratified Cox-type pseudo-partial likelihood approach to estimate the regression coefficient for the frailty parameter. The proposed estimators are consistent and asymptotically normal and a consistent estimator of the covariance matrix is provided. Simulation studies show that the proposed estimation procedure is appropriate for practical use with a realistic number of clusters. Finally, we present an application of the proposed method to kidney transplantation data from the Scientific Registry of Transplant Recipients.

摘要

摘要 在本文中,我们针对聚类失效时间数据提出了一种正稳定共享脆弱性Cox模型,其中脆弱性分布随聚类水平协变量而变化。所提出的模型考虑了协变量依赖的聚类内相关性,并允许进行条件推断和边际推断。我们直接从边际模型获得边际推断,然后使用分层Cox型伪偏似然方法来估计脆弱性参数的回归系数。所提出的估计量是一致的且渐近正态的,并提供了协方差矩阵的一致估计量。模拟研究表明,所提出的估计程序适用于具有实际聚类数量的实际应用。最后,我们将所提出的方法应用于来自移植受者科学登记处的肾移植数据。

相似文献

1
A positive stable frailty model for clustered failure time data with covariate-dependent frailty.
Biometrics. 2011 Mar;67(1):8-17. doi: 10.1111/j.1541-0420.2010.01444.x.
2
Proportional hazards regression for the analysis of clustered survival data from case-cohort studies.
Biometrics. 2011 Mar;67(1):18-28. doi: 10.1111/j.1541-0420.2010.01445.x.
4
A semiparametric joint model for longitudinal and survival data with application to hemodialysis study.
Biometrics. 2009 Sep;65(3):737-45. doi: 10.1111/j.1541-0420.2008.01168.x. Epub 2009 Jan 23.
5
Normal frailty probit model for clustered interval-censored failure time data.
Biom J. 2019 Jul;61(4):827-840. doi: 10.1002/bimj.201800114. Epub 2019 Mar 6.
6
Nonproportional hazards and unobserved heterogeneity in clustered survival data: When can we tell the difference?
Stat Med. 2019 Aug 15;38(18):3405-3420. doi: 10.1002/sim.8171. Epub 2019 May 3.
7
Marginal models for clustered time-to-event data with competing risks using pseudovalues.
Biometrics. 2011 Mar;67(1):1-7. doi: 10.1111/j.1541-0420.2010.01416.x.
8
Double-robust semiparametric estimator for differences in restricted mean lifetimes in observational studies.
Biometrics. 2012 Dec;68(4):999-1009. doi: 10.1111/j.1541-0420.2012.01759.x. Epub 2012 Apr 4.
9
Semiparametric frailty models for clustered failure time data.
Biometrics. 2012 Jun;68(2):429-36. doi: 10.1111/j.1541-0420.2011.01683.x. Epub 2011 Nov 9.
10
A general class of semiparametric transformation frailty models for nonproportional hazards survival data.
Biometrics. 2012 Dec;68(4):1126-35. doi: 10.1111/j.1541-0420.2012.01784.x. Epub 2012 Sep 24.

引用本文的文献

2
Nonparametric tests for multistate processes with clustered data.
Ann Inst Stat Math. 2022 Oct;74(5):837-867. doi: 10.1007/s10463-021-00819-x. Epub 2022 Jan 22.
3
Semiparametric marginal regression for clustered competing risks data with missing cause of failure.
Biostatistics. 2023 Jul 14;24(3):795-810. doi: 10.1093/biostatistics/kxac012.
4
A marginal cure rate proportional hazards model for spatial survival data.
J R Stat Soc Ser C Appl Stat. 2015 Aug;64(4):673-691. doi: 10.1111/rssc.12098. Epub 2015 Mar 26.

本文引用的文献

1
The use of Gaussian quadrature for estimation in frailty proportional hazards models.
Stat Med. 2008 Jun 30;27(14):2665-83. doi: 10.1002/sim.3077.
2
Estimation in the positive stable shared frailty Cox proportional hazards model.
Lifetime Data Anal. 2005 Mar;11(1):99-115. doi: 10.1007/s10985-004-5642-4.
3
Marginalized binary mixed-effects models with covariate-dependent random effects and likelihood inference.
Biometrics. 2004 Dec;60(4):884-91. doi: 10.1111/j.0006-341X.2004.00243.x.
4
Modelling clustered survival data from multicentre clinical trials.
Stat Med. 2004 Feb 15;23(3):369-88. doi: 10.1002/sim.1599.
5
Marginally specified logistic-normal models for longitudinal binary data.
Biometrics. 1999 Sep;55(3):688-98. doi: 10.1111/j.0006-341x.1999.00688.x.
6
A two-stage estimator of the dependence parameter for the Clayton-Oakes model.
Lifetime Data Anal. 2000 Jun;6(2):141-56. doi: 10.1023/a:1009664011060.
7
Frailty models of manufacturing effects.
Lifetime Data Anal. 1995;1(2):161-70. doi: 10.1007/BF00985767.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验