Simpson Shawn E
Department of Statistics, Columbia University, New York, New York, USA.
Biometrics. 2013 Mar;69(1):128-36. doi: 10.1111/j.1541-0420.2012.01795.x. Epub 2012 Sep 24.
A primary objective in the application of postmarketing drug safety surveillance is to ascertain the relationship between time-varying drug exposures and recurrent adverse events (AEs) related to health outcomes. The self-controlled case series (SCCS) method is one approach to analysis in this context. It is based on a conditional Poisson regression model, which assumes that events at different time points are conditionally independent given the covariate process. This requirement is problematic when the occurrence of an event can alter the future event risk. In a clinical setting, for example, patients who have a first myocardial infarction (MI) may be at higher subsequent risk for a second. In this work, we propose the positive dependence self-controlled case series (PD-SCCS) method: a generalization of SCCS that allows the occurrence of an event to increase the future event risk, yet maintains the advantages of the original model by controlling for fixed baseline covariates and relying solely on data from cases. As in the SCCS model, individual-level baseline parameters drop out of the PD-SCCS likelihood. Data sources used for postmarketing surveillance can contain tens of millions of people, so in this situation it is particularly advantageous that PD-SCCS avoids doing a costly estimation of individual parameters. We develop expressions for large sample inference and optimization for PD-SCCS and compare the results of our generalized model with the more restrictive SCCS approach.
药品上市后安全性监测应用的一个主要目标是确定随时间变化的药物暴露与健康结局相关的复发性不良事件(AE)之间的关系。自我对照病例系列(SCCS)方法是在这种情况下进行分析的一种方法。它基于条件泊松回归模型,该模型假设在给定协变量过程的情况下,不同时间点的事件是条件独立的。当一个事件的发生会改变未来事件风险时,这一要求就会出现问题。例如,在临床环境中,首次发生心肌梗死(MI)的患者随后发生第二次心肌梗死的风险可能更高。在这项工作中,我们提出了正相关自我对照病例系列(PD-SCCS)方法:SCCS的一种推广,它允许事件的发生增加未来事件风险,但通过控制固定的基线协变量并仅依赖病例数据来保持原始模型的优点。与SCCS模型一样,个体水平的基线参数在PD-SCCS似然函数中消失。用于上市后监测的数据源可能包含数千万人,因此在这种情况下,PD-SCCS避免对个体参数进行昂贵的估计尤其有利。我们推导了PD-SCCS的大样本推断和优化表达式,并将我们的广义模型结果与限制更强的SCCS方法进行了比较。