Lorberbaum T, Nasir M, Keiser M J, Vilar S, Hripcsak G, Tatonetti N P
Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA; Department of Biomedical Informatics, Columbia University, New York, New York, USA; Departments of Systems Biology and Medicine, Columbia University, New York, New York, USA.
Clin Pharmacol Ther. 2015 Feb;97(2):151-8. doi: 10.1002/cpt.2. Epub 2014 Dec 20.
Small molecule drugs are the foundation of modern medical practice, yet their use is limited by the onset of unexpected and severe adverse events (AEs). Regulatory agencies rely on postmarketing surveillance to monitor safety once drugs are approved for clinical use. Despite advances in pharmacovigilance methods that address issues of confounding bias, clinical data of AEs are inherently noisy. Systems pharmacology-the integration of systems biology and chemical genomics-can illuminate drug mechanisms of action. We hypothesize that these data can improve drug safety surveillance by highlighting drugs with a mechanistic connection to the target phenotype (enriching true positives) and filtering those that do not (depleting false positives). We present an algorithm, the modular assembly of drug safety subnetworks (MADSS), to combine systems pharmacology and pharmacovigilance data and significantly improve drug safety monitoring for four clinically relevant adverse drug reactions.
小分子药物是现代医学实践的基础,但其使用受到意外和严重不良事件(AE)的限制。监管机构依靠上市后监测来监测药物批准用于临床后的安全性。尽管药物警戒方法在解决混杂偏倚问题方面取得了进展,但AE的临床数据本质上是有噪声的。系统药理学——系统生物学与化学基因组学的整合——可以阐明药物的作用机制。我们假设,这些数据可以通过突出显示与目标表型有机制联系的药物(富集真阳性)并筛选出没有这种联系的药物(减少假阳性)来改善药物安全性监测。我们提出了一种算法,即药物安全子网的模块化组装(MADSS),以结合系统药理学和药物警戒数据,并显著改善对四种临床相关药物不良反应的药物安全性监测。