Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany.
Phys Rev Lett. 2012 Jul 27;109(4):048104. doi: 10.1103/PhysRevLett.109.048104.
We study the stability of globular proteins as a function of temperature and pressure through NPT simulations of a coarse-grained model. We reproduce the elliptical stability of proteins and highlight a unifying microscopic mechanism for pressure and cold denaturations. The mechanism involves the solvation of nonpolar residues with a thin layer of water. These solvated states have lower volume and lower hydrogen-bond energy compared to other conformations of nonpolar solutes. Hence, these solvated states are favorable at high pressure and low temperature, and they facilitate protein unfolding under these thermodynamical conditions.
我们通过粗粒化模型的 NPT 模拟研究了球形蛋白质在温度和压力下的稳定性。我们再现了蛋白质的椭圆形稳定性,并强调了压力和冷变性的统一微观机制。该机制涉及非极性残基的溶剂化作用,形成一层薄的水层。与非极性溶质的其他构象相比,这些溶剂化状态具有较低的体积和较低的氢键能。因此,在高压和低温下,这些溶剂化状态是有利的,并且它们促进了蛋白质在这些热力学条件下的展开。