Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2012 Aug 10;109(6):066802. doi: 10.1103/PhysRevLett.109.066802. Epub 2012 Aug 8.
The electronic properties of graphene can be manipulated via mechanical deformations, which opens prospects for both studying the Dirac fermions in new regimes and for new device applications. Certain natural configurations of strain generate large nearly uniform pseudomagnetic fields, which have opposite signs in the two valleys, and give rise to flat spin- and valley-degenerate pseudo-Landau levels (PLLs). Here we consider the effect of the Coulomb interactions in strained graphene with a uniform pseudomagnetic field. We show that the spin or valley degeneracies of the PLLs get lifted by the interactions, giving rise to topological insulator states. In particular, when a nonzero PLL is quarter or three-quarter filled, an anomalous quantum Hall state spontaneously breaking time-reversal symmetry emerges. At half-filled PLLs, a weak spin-orbital interaction stabilizes the time-reversal-symmetric quantum spin-Hall state. These many-body states are characterized by the quantized conductance and persist to a high temperature scale set by the Coulomb interactions, which we estimate to be a few hundreds Kelvin at moderate strain values. At fractional fillings, fractional quantum Hall states breaking valley symmetry emerge. These results suggest a new route to realizing robust topological states in mesoscopic graphene.
通过机械变形可以操纵石墨烯的电子性质,这为在新的环境中研究狄拉克费米子以及新的器件应用开辟了前景。某些应变的自然配置会产生大的几乎均匀的赝磁场,在两个谷中有相反的符号,并产生平坦的自旋和谷简并赝朗道能级(PLL)。在这里,我们考虑在具有均匀赝磁场的应变石墨烯中的库仑相互作用的影响。我们表明,相互作用会使 PLL 的自旋或谷简并度升高,从而产生拓扑绝缘体状态。特别是,当非零 PLL 四分之一或四分之三填满时,会出现自发破缺时间反演对称性的反常量子霍尔状态。在 PLL 半满时,弱自旋轨道相互作用稳定了时间反演对称的量子自旋霍尔状态。这些多体状态的特征是电导量子化,并在由库仑相互作用设定的高温尺度上存在,我们估计在中等应变值下约为几百开尔文。在分数填充时,会出现破缺谷对称性的分数量子霍尔状态。这些结果表明了在介观石墨烯中实现稳健拓扑状态的新途径。