Suppr超能文献

处于量子自旋霍尔相的拓扑狄拉克绝缘体。

A topological Dirac insulator in a quantum spin Hall phase.

作者信息

Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z

机构信息

Joseph Henry Laboratories of Physics, Department of Physics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Nature. 2008 Apr 24;452(7190):970-4. doi: 10.1038/nature06843.

Abstract

When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic fields. Bulk Bi(1-x)Sb(x) single crystals are predicted to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher-dimensional analogues of the edge states that characterize a quantum spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi(1-x)Sb(x) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest following the new findings in two-dimensional graphene and charge quantum Hall fractionalization observed in pure bismuth. However, despite numerous transport and magnetic measurements on the Bi(1-x)Sb(x) family since the 1960s, no direct evidence of either topological Hall states or bulk Dirac particles has been found. Here, using incident-photon-energy-modulated angle-resolved photoemission spectroscopy (IPEM-ARPES), we report the direct observation of massive Dirac particles in the bulk of Bi(0.9)Sb(0.1), locate the Kramers points at the sample's boundary and provide a comprehensive mapping of the Dirac insulator's gapless surface electron bands. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the 'topological metal'. They also suggest that this material has potential application in developing next-generation quantum computing devices that may incorporate 'light-like' bulk carriers and spin-textured surface currents.

摘要

当电子处于强外部磁场中时,传统的电荷量子霍尔效应表明,样品体内会产生电子激发能隙,但边界处允许金属传导。最近的理论模型表明,某些具有大自旋轨道相互作用的体绝缘体在量子极限下也可能自然地支持导电拓扑边界态,这为在零外部磁场中研究异常的量子霍尔类现象开辟了可能性。体相Bi(1-x)Sb(x)单晶被预测是一种被称为拓扑绝缘体的此类异常霍尔相物质的主要候选材料。拓扑绝缘体的标志是存在金属表面态,它们是表征量子自旋霍尔绝缘体的边缘态的高维类似物。除了其有趣的边界态外,Bi(1-x)Sb(x)体相还被预测会表现出三维狄拉克粒子,这是继二维石墨烯的新发现以及在纯铋中观察到的电荷量子霍尔分数化之后,当前另一个备受关注的话题。然而,尽管自20世纪60年代以来对Bi(1-x)Sb(x)家族进行了大量的输运和磁性测量,但尚未找到拓扑霍尔态或体相狄拉克粒子的直接证据。在此,我们使用入射光子能量调制角分辨光电子能谱(IPEM-ARPES),报告了在Bi(0.9)Sb(0.1)体相中对大量狄拉克粒子的直接观测,确定了样品边界处的克莱默斯点,并提供了狄拉克绝缘体无隙表面电子能带的全面映射。综合这些发现表明,在体绝缘体边界观察到的表面态是“拓扑金属”的一种实现。它们还表明,这种材料在开发下一代量子计算设备方面具有潜在应用,这些设备可能包含“类光”体载流子和自旋纹理表面电流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验