Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Matière Condensée et Systèmes Electroactifs, Campus de Beaulieu, Bât 10A, 35042 Rennes cedex, France.
J Am Chem Soc. 2012 Oct 17;134(41):17138-48. doi: 10.1021/ja3065649. Epub 2012 Oct 5.
On the basis of the reported radical neutral complex [Au(Et-thiazdt)(2)] (Et-thiazdt = N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate), a series of single-component conductors derived from [Au(Et-thiazdt)(2)], also noted as [AuS(4)(═S)(2)], has been developed, by replacing the outer sulfur atoms of the thiazoline-2-thione rings by oxygen atoms and/or by replacing the coordinating sulfur atoms by selenium atoms toward the corresponding diselenolene complexes. Comparison of the X-ray crystal structures and transport properties of the four isostructural complexes, noted as [AuS(4)(═S)(2)], [AuS(4)(═O)(2)], [AuSe(4)(═S)(2)], and [AuSe(4)(═O)(2)], shows that the oxygen substitution on the outer thiazoline ring actually decreases the conductivity by a factor of 100, despite a contracted unit cell volume reflecting a positive chemical pressure effect. On the other hand, the S/Se substitution increases the conductivity by a factor of 100, and the pressure needed to transform these semiconductors into the metallic state is shifted from 13 kbar in [AuS(4)(═S)(2)] to only ≈6 kbar in [AuSe(4)(═S)(2)]. Analysis of unit cell evolutions and ab initio band structure calculations demonstrates the strongly anisotropic nature of this chemical pressure effect and provides an explanation for the observed changes in conductivity. The greater sensitivity of these neutral single-component conductors to external pressure, as compared with "classical" radical salts, is also highlighted.
基于报道的自由基中性配合物[Au(Et-thiazdt)(2)](Et-thiazdt = N-乙基-1,3-噻唑啉-2-硫酮-4,5-二硫醇),通过用氧原子取代噻唑啉-2-硫酮环的外部硫原子,以及/或者用硒原子取代配位硫原子,开发了一系列源自[Au(Et-thiazdt)(2)]的单组分导体,也被标记为[AuS(4)(═S)(2)]。对四个同构配合物,标记为[AuS(4)(═S)(2)]、[AuS(4)(═O)(2)]、[AuSe(4)(═S)(2)]和[AuSe(4)(═O)(2)]的 X 射线晶体结构和输运性质进行比较表明,尽管外噻唑啉环上的氧取代实际上使电导率降低了 100 倍,但由于单元细胞体积收缩反映出正化学压力效应,电导率降低了。另一方面,S/Se 取代使电导率提高了 100 倍,并且将这些半导体转变为金属态所需的压力从[AuS(4)(═S)(2)]中的 13 kbar 转移到[AuSe(4)(═S)(2)]中仅约 6 kbar。对单元细胞演化和从头算能带结构计算的分析表明了这种化学压力效应的强烈各向异性,并提供了对观察到的电导率变化的解释。与“经典”自由基盐相比,这些中性单组分导体对外部压力的敏感性更高,这一点也得到了强调。