Suppr超能文献

基于自由基二硫烯和二硒烯金配合物的单组分分子金属的各向异性化学压力效应。

Anisotropic chemical pressure effects in single-component molecular metals based on radical dithiolene and diselenolene gold complexes.

机构信息

Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Matière Condensée et Systèmes Electroactifs, Campus de Beaulieu, Bât 10A, 35042 Rennes cedex, France.

出版信息

J Am Chem Soc. 2012 Oct 17;134(41):17138-48. doi: 10.1021/ja3065649. Epub 2012 Oct 5.

Abstract

On the basis of the reported radical neutral complex [Au(Et-thiazdt)(2)] (Et-thiazdt = N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate), a series of single-component conductors derived from [Au(Et-thiazdt)(2)], also noted as [AuS(4)(═S)(2)], has been developed, by replacing the outer sulfur atoms of the thiazoline-2-thione rings by oxygen atoms and/or by replacing the coordinating sulfur atoms by selenium atoms toward the corresponding diselenolene complexes. Comparison of the X-ray crystal structures and transport properties of the four isostructural complexes, noted as [AuS(4)(═S)(2)], [AuS(4)(═O)(2)], [AuSe(4)(═S)(2)], and [AuSe(4)(═O)(2)], shows that the oxygen substitution on the outer thiazoline ring actually decreases the conductivity by a factor of 100, despite a contracted unit cell volume reflecting a positive chemical pressure effect. On the other hand, the S/Se substitution increases the conductivity by a factor of 100, and the pressure needed to transform these semiconductors into the metallic state is shifted from 13 kbar in [AuS(4)(═S)(2)] to only ≈6 kbar in [AuSe(4)(═S)(2)]. Analysis of unit cell evolutions and ab initio band structure calculations demonstrates the strongly anisotropic nature of this chemical pressure effect and provides an explanation for the observed changes in conductivity. The greater sensitivity of these neutral single-component conductors to external pressure, as compared with "classical" radical salts, is also highlighted.

摘要

基于报道的自由基中性配合物[Au(Et-thiazdt)(2)](Et-thiazdt = N-乙基-1,3-噻唑啉-2-硫酮-4,5-二硫醇),通过用氧原子取代噻唑啉-2-硫酮环的外部硫原子,以及/或者用硒原子取代配位硫原子,开发了一系列源自[Au(Et-thiazdt)(2)]的单组分导体,也被标记为[AuS(4)(═S)(2)]。对四个同构配合物,标记为[AuS(4)(═S)(2)]、[AuS(4)(═O)(2)]、[AuSe(4)(═S)(2)]和[AuSe(4)(═O)(2)]的 X 射线晶体结构和输运性质进行比较表明,尽管外噻唑啉环上的氧取代实际上使电导率降低了 100 倍,但由于单元细胞体积收缩反映出正化学压力效应,电导率降低了。另一方面,S/Se 取代使电导率提高了 100 倍,并且将这些半导体转变为金属态所需的压力从[AuS(4)(═S)(2)]中的 13 kbar 转移到[AuSe(4)(═S)(2)]中仅约 6 kbar。对单元细胞演化和从头算能带结构计算的分析表明了这种化学压力效应的强烈各向异性,并提供了对观察到的电导率变化的解释。与“经典”自由基盐相比,这些中性单组分导体对外部压力的敏感性更高,这一点也得到了强调。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验