Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China.
Colloids Surf B Biointerfaces. 2013 Jan 1;101:319-24. doi: 10.1016/j.colsurfb.2012.07.004. Epub 2012 Jul 17.
The anticoagulation properties of biomaterials are crucial for biomedical applications, especially for blood-contacting materials. In this work, a range of functional graphene oxide based on the biomimetic monomer 2-(methacryloyloxy) ethyl phosphorylcholine (GO-g-pMPC) were synthesized by RATRP in alcoholic media using peroxide groups as initiator, and then filled into the polyurethane matrix to obtain the polyurethane (PU)/functional graphene oxide nanocomposite films (PU/GO-g-pMPC). The tensile strength and elongation and morphology of the PU/GO-g-pMPC were characterized by mechanical properties test, Transmission electron microscope (TEM), respectively. The results showed that a small amount of graphene oxide can improve the mechanical properties of PU. The blood compatibility of the PU substrates was evaluated by protein adsorption tests and platelet adhesion tests in vitro. It was found that all the PU/GO-g-pMPC showed improved resistance to nonspecific protein adsorption and platelet adhesion.
生物材料的抗凝特性对于生物医学应用至关重要,特别是对于与血液接触的材料。在这项工作中,通过 RATRP 在醇介质中使用过氧化物基团作为引发剂合成了一系列基于仿生单体 2-(甲基丙烯酰氧基)乙基磷酸胆碱 (GO-g-pMPC) 的功能化氧化石墨烯,并将其填充到聚氨酯基体中以获得聚氨酯 (PU)/功能化氧化石墨烯纳米复合材料薄膜 (PU/GO-g-pMPC)。通过力学性能测试、透射电子显微镜 (TEM) 分别对 PU/GO-g-pMPC 的拉伸强度、伸长率和形貌进行了表征。结果表明,少量氧化石墨烯可以提高 PU 的力学性能。通过体外蛋白质吸附试验和血小板黏附试验评价了 PU 基底的血液相容性。结果发现,所有 PU/GO-g-pMPC 均表现出对非特异性蛋白质吸附和血小板黏附的抵抗力增强。