Suppr超能文献

用于评估爆炸伤的人体头颈部计算模型。

Human head-neck computational model for assessing blast injury.

机构信息

Johns Hopkins University, Applied Physics Laboratory, 10020 Johns Hopkins Road, Laurel, MD 20723, USA.

出版信息

J Biomech. 2012 Nov 15;45(16):2899-906. doi: 10.1016/j.jbiomech.2012.07.027. Epub 2012 Sep 23.

Abstract

A human head finite element model (HHFEM) was developed to study the effects of a blast to the head. To study both the kinetic and kinematic effects of a blast wave, the HHFEM was attached to a finite element model of a Hybrid III ATD neck. A physical human head surrogate model (HSHM) was developed from solid model files of the HHFEM, which was then attached to a physical Hybrid III ATD neck and exposed to shock tube overpressures. This allowed direct comparison between the HSHM and HHFEM. To develop the temporal and spatial pressures on the HHFEM that would simulate loading to the HSHM, a computational fluid dynamics (CFD) model of the HHFEM in front of a shock tube was generated. CFD simulations were made using loads equivalent to those seen in experimental studies of the HSHM for shock tube driver pressures of 517, 690 and 862 kPa. Using the selected brain material properties, the peak intracranial pressures, temporal and spatial histories of relative brain-skull displacements and the peak relative brain-skull displacements in the brain of the HHFEM compared favorably with results from the HSHM. The HSHM sensors measured the rotations of local areas of the brain as well as displacements, and the rotations of the sensors in the sagittal plane of the HSHM were, in general, correctly predicted from the HHFEM. Peak intracranial pressures were between 70 and 120 kPa, while the peak relative brain-skull displacements were between 0.5 and 3.0mm.

摘要

建立了一个人类头部有限元模型(HHFEM)来研究头部爆炸的影响。为了研究爆炸波的动力学和运动学效应,将 HHFEM 附加到 Hybrid III ATD 颈部的有限元模型上。从 HHFEM 的实体模型文件中开发了一个物理人类头部替代模型(HSHM),然后将其连接到物理 Hybrid III ATD 颈部,并暴露于冲击管超压下。这允许 HSHM 和 HHFEM 之间进行直接比较。为了在 HHFEM 上开发模拟 HSHM 加载的时间和空间压力,生成了冲击管前方 HHFEM 的计算流体动力学(CFD)模型。使用与在冲击管驱动压力为 517、690 和 862 kPa 的 HSHM 实验研究中看到的等效载荷进行了 CFD 模拟。使用选定的大脑材料特性,与 HSHM 的结果相比,HHFEM 的颅内峰值压力、相对脑颅骨位移的时间和空间历史以及脑内的峰值相对脑颅骨位移都表现良好。HSHM 传感器测量大脑局部区域的旋转和位移,并且 HSHM 矢状平面上传感器的旋转通常可以从 HHFEM 正确预测。颅内峰值压力在 70 至 120 kPa 之间,而峰值相对脑颅骨位移在 0.5 至 3.0mm 之间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验