Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute, Japan.
Cereb Cortex. 2014 Jan;24(1):110-8. doi: 10.1093/cercor/bhs294. Epub 2012 Sep 25.
How does our brain detect changes in a natural scene? While changes by increments of specific visual attributes, such as contrast or motion coherence, can be signaled by an increase in neuronal activity in early visual areas, like the primary visual cortex (V1) or the human middle temporal complex (hMT+), respectively, the mechanisms for signaling changes resulting from decrements in a stimulus attribute are largely unknown. We have discovered opposing patterns of cortical responses to changes in motion coherence: unlike areas hMT+, V3A and parieto-occipital complex (V6+) that respond to changes in the level of motion coherence monotonically, human areas V4 (hV4), V3B, and ventral occipital always respond positively to both transient increments and decrements. This pattern of responding always positively to stimulus changes can emerge in the presence of either coherence-selective neuron populations, or neurons that are not tuned to particular coherences but adapt to a particular coherence level in a stimulus-selective manner. Our findings provide evidence that these areas possess physiological properties suited for signaling increments and decrements in a stimulus and may form a part of cortical vigilance system for detecting salient changes in the environment.
我们的大脑如何检测自然场景中的变化?虽然特定视觉属性(如对比度或运动一致性)的增量变化可以分别通过早期视觉区域(如初级视觉皮层 [V1] 或人类颞中复合体 [hMT+])中的神经元活动增加来信号传递,但用于信号传递刺激属性减少导致的变化的机制在很大程度上是未知的。我们发现了皮质反应对运动一致性变化的相反模式:与 hMT+、V3A 和顶枕复合区(V6+)不同,它们对运动一致性水平的变化呈单调响应,人类 V4(hV4)、V3B 和腹侧枕叶总是对暂态增加和减少都呈正响应。这种对刺激变化总是呈正响应的反应模式可以在存在相干选择性神经元群体或对特定相干性没有调谐但以刺激选择性方式适应特定相干性水平的神经元的情况下出现。我们的发现提供了证据,证明这些区域具有适合信号传递刺激增量和减量的生理特性,并且可能构成用于检测环境中显著变化的皮质警戒系统的一部分。