Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
Graduate School of Information Sciences, Tohoku University, Sendai, Japan.
Sci Rep. 2021 Feb 17;11(1):3995. doi: 10.1038/s41598-021-82900-2.
Two different motion mechanisms have been identified with motion aftereffect (MAE). (1) A slow motion mechanism, accessed by a static MAE, is sensitive to high-spatial and low-temporal frequency; (2) a fast motion mechanism, accessed by a flicker MAE, is sensitive to low-spatial and high-temporal frequency. We examined their respective responses to global motion after adapting to a global motion pattern constructed of multiple compound Gabor patches arranged circularly. Each compound Gabor patch contained two gratings at different spatial frequencies (0.53 and 2.13 cpd) drifting in opposite directions. The participants reported the direction and duration of the MAE for a variety of global motion patterns. We discovered that static MAE durations depended on the global motion patterns, e.g., longer MAE duration to patches arranged to see rotation than to random motion (Exp 1), and increase with global motion strength (patch number in Exp 2). In contrast, flicker MAEs durations are similar across different patterns and adaptation strength. Further, the global integration occurred at the adaptation stage, rather than at the test stage (Exp 3). These results suggest that slow motion mechanism, assessed by static MAE, integrate motion signals over space while fast motion mechanisms do not, at least under the conditions used.
已经确定了两种不同的运动机制与运动后效(MAE)有关。(1)一种慢的运动机制,通过静态 MAE 访问,对高空间和低时间频率敏感;(2)一种快的运动机制,通过闪烁 MAE 访问,对低空间和高时间频率敏感。我们研究了它们各自对由多个圆形排列的复合 Gabor 补丁组成的全局运动模式的适应后的响应。每个复合 Gabor 补丁包含两个在不同空间频率(0.53 和 2.13 cpd)上以相反方向漂移的光栅。参与者报告了各种全局运动模式的 MAE 的方向和持续时间。我们发现,静态 MAE 持续时间取决于全局运动模式,例如,与随机运动相比,看到旋转的补丁排列的 MAE 持续时间更长(实验 1),并且随着全局运动强度(实验 2 中的补丁数量)增加。相比之下,闪烁 MAE 持续时间在不同模式和适应强度下相似。此外,全局整合发生在适应阶段,而不是测试阶段(实验 3)。这些结果表明,由静态 MAE 评估的慢的运动机制在空间上整合运动信号,而快的运动机制则不会,至少在使用的条件下不会。