Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16534-9. doi: 10.1073/pnas.1210418109. Epub 2012 Sep 25.
Alphaviruses, a group of positive-sense RNA viruses, are globally distributed arboviruses capable of causing rash, arthritis, encephalitis, and death in humans. The viral replication machinery consists of four nonstructural proteins (nsP1-4) produced as a single polyprotein. Processing of the polyprotein occurs in a highly regulated manner, with cleavage at the P2/3 junction influencing RNA template use during genome replication. Here, we report the structure of P23 in a precleavage form. The proteins form an extensive interface and nsP3 creates a ring structure that encircles nsP2. The P2/3 cleavage site is located at the base of a narrow cleft and is not readily accessible, suggesting a highly regulated cleavage. The nsP2 protease active site is over 40 Å away from the P2/3 cleavage site, supporting a trans cleavage mechanism. nsP3 contains a previously uncharacterized protein fold with a zinc-coordination site. Known mutations in nsP2 that result in formation of noncytopathic viruses or a temperature sensitive phenotype cluster at the nsP2/nsP3 interface. Structure-based mutations in nsP3 opposite the location of the nsP2 noncytopathic mutations prevent efficient cleavage of P23, affect RNA infectivity, and alter viral RNA production levels, highlighting the importance of the nsP2/nsP3 interaction in pathogenesis. A potential RNA-binding surface, spanning both nsP2 and nsP3, is proposed based on the location of ion-binding sites and adaptive mutations. These results offer unexpected insights into viral protein processing and pathogenesis that may be applicable to other polyprotein-encoding viruses such as HIV, hepatitis C virus (HCV), and Dengue virus.
甲病毒是一组正链 RNA 病毒,广泛分布于全球,可引起人类皮疹、关节炎、脑炎和死亡。病毒复制机制由四个非结构蛋白(nsP1-4)组成,作为一个单一的多蛋白产生。多蛋白的加工以高度调节的方式进行,P2/3 连接处的切割影响基因组复制过程中 RNA 模板的使用。在这里,我们报告了前切割形式的 P23 结构。这些蛋白形成了广泛的界面,nsP3 形成了一个环绕 nsP2 的环结构。P2/3 切割位点位于狭窄裂缝的底部,不易接近,表明切割受到高度调控。nsP2 蛋白酶活性位点距离 P2/3 切割位点超过 40 Å,支持跨切割机制。nsP3 包含一个以前未被表征的蛋白折叠,具有锌配位位点。导致形成非致细胞病变病毒或温度敏感表型的 nsP2 中的已知突变聚集在 nsP2/nsP3 界面。位于 nsP2 非致细胞病变突变位置对面的 nsP3 结构突变会阻止 P23 的有效切割,影响 RNA 感染力,并改变病毒 RNA 产生水平,突出了 nsP2/nsP3 相互作用在发病机制中的重要性。基于离子结合位点和适应性突变的位置,提出了一个跨越 nsP2 和 nsP3 的潜在 RNA 结合表面。这些结果提供了对病毒蛋白加工和发病机制的意外洞察,可能适用于其他多蛋白编码病毒,如 HIV、丙型肝炎病毒 (HCV) 和登革热病毒。
Proc Natl Acad Sci U S A. 2012-9-25
Mol Ther. 2025-4-3
Wiley Interdiscip Rev RNA. 2025
Front Cell Infect Microbiol. 2024
PLoS Negl Trop Dis. 2012-2-14
J Mol Graph Model. 2010-4-24
PLoS Negl Trop Dis. 2010-4-27