School of Mechanical and Materials Engineering, University College Dublin, Belfield 4, Dublin, Ireland.
Biomech Model Mechanobiol. 2013 Aug;12(4):781-91. doi: 10.1007/s10237-012-0442-3. Epub 2012 Sep 26.
Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a 'compressibility parameter' (or 'penalty factor'), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a 'bulk modulus', although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in 'Poisson's ratio' close to the perfect incompressibility limit of 1/2 are made.
不可压缩的非线性超弹性材料在有限元数值实验中很少被模拟为完全不可压缩,因为全局满足这一约束会带来数值上的困难。因此,大多数商业有限元软件包都假设材料具有轻微的可压缩性。然后进一步假设相应的应变能函数可以附加地分解为体积部分和偏斜部分。我们证明了这种分解在物理上是不现实的,特别是对于各向异性材料,各向异性材料对于模拟生物软组织的力学响应尤其重要。这种分解的最显著缺点是,在这种分解下,各向异性的静水张力下的立方体变形为另一个立方体,而不是具有非平行面的六面体。此外,商业数值代码需要指定一个“可压缩性参数”(或“罚因子”),这是由应变能函数的有缺陷的附加分解自然产生的。该参数通常与“体积模量”相关联,尽管对于各向异性固体来说,这个概念没有意义;我们证明它本质上是一个任意参数,并且对其进行微小的改变会导致预测的应力响应发生显著变化。通过对动脉的双轴拉伸实验的数值模拟来说明这一点,当接近 1/2 的完全不可压缩极限的“泊松比”的微小变化时,发现应力响应的幅度发生了几个数量级的变化。