Suppr超能文献

脑缺血再灌注损伤的分子机制:线粒体膜电位在活性氧生成中的关键作用。

Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation.

机构信息

Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.

出版信息

Mol Neurobiol. 2013 Feb;47(1):9-23. doi: 10.1007/s12035-012-8344-z. Epub 2012 Sep 26.

Abstract

Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a "burst" of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.

摘要

中风和循环骤停会导致大脑血流中断,从而导致相当大的组织损伤。减少或预防脑缺血患者神经损伤的主要方法是迅速恢复缺血组织的血流。然而,矛盾的是,血流的恢复会导致额外的损伤,并使经历脑缺血事件的患者的神经认知缺陷恶化。线粒体通过产生过多的活性氧物质(ROS)在再灌注损伤中起着关键作用,从而破坏细胞成分并引发细胞死亡。在这篇综述中,我们总结了我们目前对再灌注过程中线粒体 ROS 生成机制的理解,特别是线粒体膜电位在脑缺血/再灌注病理中的作用。此外,我们提出了一个 ROS 生成的时间模型,其中缺血引起的关键氧化磷酸化(OxPhos)蛋白的翻译后修饰在重新引入氧气时诱导超活性状态。超活性 OxPhos 产生高的线粒体膜电位,这种情况已知会产生过多的 ROS。这种状态会导致再灌注时 ROS 的“爆发”,从而对线粒体造成结构和功能损伤,并诱导细胞死亡信号,最终导致组织损伤。最后,我们提出,旨在调节这种线粒体膜电位的适应不良超极化的策略可能是一种新的治疗干预措施,并提出了具体的研究,证明了这种治疗方式的细胞保护作用。

相似文献

2
Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury.
Mol Neurobiol. 2021 Oct;58(10):5253-5271. doi: 10.1007/s12035-021-02494-8. Epub 2021 Jul 18.
6
Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats.
PLoS One. 2012;7(9):e46498. doi: 10.1371/journal.pone.0046498. Epub 2012 Sep 28.
8
The effects of propofol on mitochondrial dysfunction following focal cerebral ischemia-reperfusion in rats.
Neuropharmacology. 2014 Feb;77:358-68. doi: 10.1016/j.neuropharm.2013.08.029. Epub 2013 Sep 10.
10
Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury.
J Cereb Blood Flow Metab. 2017 Dec;37(12):3649-3658. doi: 10.1177/0271678X17730242. Epub 2017 Sep 15.

引用本文的文献

2
Protective effect and molecular mechanisms of magnolol in ischemic stroke.
Pharmacol Rep. 2025 Jul 23. doi: 10.1007/s43440-025-00764-z.
3
Advances in brain remodeling, stem cell therapies, and translational barriers in stroke and brain aging.
Biogerontology. 2025 Jul 11;26(4):143. doi: 10.1007/s10522-025-10282-3.
8
The Role of Oxidative Stress in Ischaemic Stroke and the Influence of Gut Microbiota.
Antioxidants (Basel). 2025 Apr 30;14(5):542. doi: 10.3390/antiox14050542.

本文引用的文献

1
Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.
PLoS One. 2013 Nov 5;8(11):e78627. doi: 10.1371/journal.pone.0078627. eCollection 2013.
2
Multiple phosphorylations of cytochrome c oxidase and their functions.
Proteomics. 2012 Apr;12(7):950-9. doi: 10.1002/pmic.201100618.
3
Measurement of the mitochondrial membrane potential and pH gradient from the redox poise of the hemes of the bc1 complex.
Biophys J. 2012 Mar 7;102(5):1194-203. doi: 10.1016/j.bpj.2012.02.003. Epub 2012 Mar 6.
4
Ischemia-induced inhibition of mitochondrial complex I in rat brain: effect of permeabilization method and electron acceptor.
Neurochem Res. 2012 May;37(5):965-76. doi: 10.1007/s11064-011-0689-6. Epub 2012 Jan 5.
5
Relation between mitochondrial membrane potential and ROS formation.
Methods Mol Biol. 2012;810:183-205. doi: 10.1007/978-1-61779-382-0_12.
8
Mitochondrial structure and function are disrupted by standard isolation methods.
PLoS One. 2011 Mar 28;6(3):e18317. doi: 10.1371/journal.pone.0018317.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验