Suppr超能文献

成年小鼠脑片海马CA1区延迟性缺血/再灌注诱发活性氧生成的机制。

Mechanisms of delayed ischemia/reperfusion evoked ROS generation in the hippocampal CA1 zone of adult mouse brain slices.

作者信息

Medvedeva Yuliya V, Sharman Edward, Weiss John H

机构信息

Department of Neurology, University of California, Irvine, Irvine, CA, 92697-4299, USA.

Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4299, USA.

出版信息

Sci Rep. 2025 Jul 2;15(1):23439. doi: 10.1038/s41598-025-07070-x.

Abstract

ROS overproduction is an important contributor to delayed ischemia/reperfusion induced neuronal injury, but relevant mechanisms remain poorly understood. We used oxygen-glucose deprivation (OGD)/reperfusion in mouse hippocampal slices to investigate ROS production in the CA1 pyramidal cell layer during and after transient ischemia. OGD evoked a 2-stage increase in ROS production: 1st-an abrupt increase in ROS generation starting during OGD followed by a marked slowing; and 2nd-a sharp ROS burst starting ~ 40 min after reperfusion. We further found that a slight mitochondrial hyperpolarization occurs shortly after OGD termination. Consequently, we showed that administration of low dose FCCP or of FTY720 (both of which cause mild, ~ 10%, mitochondrial depolarization), markedly diminished the delayed ROS burst, suggesting that mitochondrial hyperpolarization contributes to ROS production after reperfusion. Zn chelation after OGD withdrawal also substantially decreased the late surge of ROS generation-in line with our prior studies indicating a critical contribution of Zn entry into mitochondria via the mitochondrial Ca uniporter (MCU) to mitochondrial damage after OGD. Thus, reperfusion-induced mitochondria hyperpolarization and mitochondrial Zn accumulation both contribute to mitochondrial ROS overproduction after ischemia. As these events occur after reperfusion, they may be amenable to therapeutic interventions.

摘要

活性氧(ROS)的过度产生是延迟性缺血/再灌注诱导神经元损伤的一个重要因素,但相关机制仍知之甚少。我们利用小鼠海马脑片的氧糖剥夺(OGD)/再灌注来研究短暂缺血期间及之后CA1锥体细胞层中ROS的产生。OGD引起ROS产生的两阶段增加:第一阶段——在OGD期间开始时ROS生成突然增加,随后显著减慢;第二阶段——再灌注后约40分钟开始出现ROS的急剧爆发。我们进一步发现,OGD终止后不久会出现轻微的线粒体超极化。因此,我们表明,给予低剂量的羰基氰化物-4-(三氟甲氧基)苯腙(FCCP)或芬戈莫德(FTY720)(两者都会导致轻度的,约10%的线粒体去极化),可显著减少延迟性ROS爆发,这表明线粒体超极化有助于再灌注后ROS的产生。OGD撤除后进行锌螯合也可大幅降低ROS生成的后期激增,这与我们之前的研究一致,即锌通过线粒体钙单向转运体(MCU)进入线粒体对OGD后的线粒体损伤起关键作用有关。因此,再灌注诱导的线粒体超极化和线粒体锌积累均有助于缺血后线粒体ROS的过度产生。由于这些事件发生在再灌注之后,它们可能适合进行治疗干预。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验