Golenia Aleksandra, Olejnik Piotr
Department of Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland.
Antioxidants (Basel). 2025 Apr 30;14(5):542. doi: 10.3390/antiox14050542.
Ischaemic stroke is the most prevalent stroke subtype, accounting for 80-90% of all cases worldwide, and remains a leading cause of morbidity and mortality. Its pathophysiology involves complex molecular cascades, with oxidative stress playing a central role. During cerebral ischaemia, reduced blood flow deprives neurons of essential oxygen and nutrients, triggering excitotoxicity, mitochondrial dysfunction, and excessive production of reactive oxygen and nitrogen species (RONS). Not only do these species damage cellular components, but they also activate inflammatory pathways, particularly those mediated by the transcription factor nuclear factor kappa-B (NF-κB). The pro-inflammatory milieu intensifies neuronal damage, compromises blood-brain barrier integrity, and exacerbates reperfusion-induced damage. Recent findings highlight the importance of the gut microbiota in modulating stroke outcomes, primarily through metabolic and immunological interactions along the gut-brain axis. Dysbiosis, characterised by reduced microbial diversity and an imbalance between beneficial and harmful strains, has been linked to increased systemic inflammation, oxidative stress, and worse prognoses. Specific gut-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), appear to either mitigate or intensify neuronal injury. SCFAs may strengthen the blood-brain barrier and temper inflammatory responses, whereas elevated TMAO levels may increase thrombotic risk. This narrative review consolidates both experimental and clinical data demonstrating the central role of oxidative stress in ischaemic stroke pathophysiology and explores the gut microbiota's ability to modulate these damaging processes. Therapeutic strategies targeting oxidative pathways or rebalancing gut microbial composition, such as antioxidant supplementation, dietary modulation, probiotics, and faecal microbiota transplantation, present promising paradigms for stroke intervention. However, their widespread clinical implementation is hindered by a lack of large-scale, randomised trials. Future efforts should employ a multidisciplinary approach to elucidate the intricate mechanisms linking oxidative stress and gut dysbiosis to ischaemic stroke, thereby paving the way for novel, mechanism-based therapies for improved patient outcomes.
缺血性中风是最常见的中风亚型,占全球所有病例的80-90%,仍然是发病和死亡的主要原因。其病理生理学涉及复杂的分子级联反应,氧化应激起着核心作用。在脑缺血期间,血流减少使神经元无法获得必需的氧气和营养物质,从而引发兴奋性毒性、线粒体功能障碍以及活性氧和氮物种(RONS)的过度产生。这些物质不仅会损害细胞成分,还会激活炎症途径,特别是由转录因子核因子κB(NF-κB)介导的途径。促炎环境会加剧神经元损伤,损害血脑屏障的完整性,并加重再灌注诱导的损伤。最近的研究结果强调了肠道微生物群在调节中风结局中的重要性,主要是通过肠道-脑轴的代谢和免疫相互作用。以微生物多样性降低以及有益菌和有害菌之间失衡为特征的生态失调与全身炎症增加、氧化应激和更差的预后有关。特定的肠道衍生代谢物,包括短链脂肪酸(SCFAs)和氧化三甲胺(TMAO),似乎要么减轻要么加剧神经元损伤。短链脂肪酸可能会加强血脑屏障并缓和炎症反应,而氧化三甲胺水平升高可能会增加血栓形成风险。这篇叙述性综述整合了实验和临床数据,证明了氧化应激在缺血性中风病理生理学中的核心作用,并探讨了肠道微生物群调节这些损伤过程的能力。针对氧化途径或重新平衡肠道微生物组成的治疗策略,如抗氧化剂补充、饮食调节、益生菌和粪便微生物群移植,为中风干预提供了有前景的范例。然而,由于缺乏大规模的随机试验,它们在临床上的广泛应用受到了阻碍。未来的研究应采用多学科方法来阐明将氧化应激和肠道生态失调与缺血性中风联系起来的复杂机制,从而为基于机制的新型疗法铺平道路,以改善患者的预后。
Antioxidants (Basel). 2025-4-30
Eur J Med Res. 2024-12-23
Front Cell Neurosci. 2025-4-17
Antioxidants (Basel). 2024-8-14
Naunyn Schmiedebergs Arch Pharmacol. 2025-4-9
Int J Mol Sci. 2025-3-11
Int J Mol Sci. 2025-6-16
Antioxidants (Basel). 2024-12-31
Clin Neurol Neurosurg. 2025-2
Int J Stroke. 2025-2
Biomolecules. 2024-9-6
Front Cell Infect Microbiol. 2024-4-5