Laboratoire Léon Brillouin, CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
Proteins. 2013 Feb;81(2):326-40. doi: 10.1002/prot.24189. Epub 2012 Nov 12.
We performed complementary inelastic neutron scattering (INS) experiments and molecular dynamics (MD) simulations to study the influence of pressure on the low-frequency vibrational modes of lysozyme in aqueous solution in the 1 atm-6 kbar range. Increasing pressure induces a high-frequency shift of the low-frequency part (<10 meV = 80 cm(-1)) of the vibrational density of states (VDOS), g(ω), of both lysozyme and water that reveals a stiffening of the interactions ascribed to the reduction of the protein and water volumes. Accordingly, high pressures increase the curvature of the free energy profiles of the protein quasiharmonic vibrational modes. Furthermore, the nonlinear influence of pressure on the g(ω) of lysozyme indicates a change of protein dynamics that reflects the nonlinear pressure dependence of the protein compressibility. An analogous dynamical change is observed for water and stems from the distortion of its tetrahedral structure under pressure. Moreover, our study reveals that the structural, dynamical, and vibrational properties of the hydration water of lysozyme are less sensitive to pressure than those of bulk water, thereby evidencing the strong influence of the protein surface on hydration water.
我们进行了互补非弹性中子散射(INS)实验和分子动力学(MD)模拟,以研究压力对水相中溶菌酶低频振动模式的影响,压力范围为 1 大气压至 6 千巴。随着压力的增加,振动态密度(VDOS)g(ω)的低频部分(<10 meV = 80 cm(-1))的高频移动表明相互作用变硬,这归因于蛋白质和水体积的减少。因此,高压会增加蛋白质准谐振动模式自由能曲线的曲率。此外,压力对溶菌酶 g(ω)的非线性影响表明蛋白质动力学发生变化,反映了蛋白质压缩性的非线性压力依赖性。水也观察到类似的动态变化,这源于其四面体结构在压力下的变形。此外,我们的研究表明,溶菌酶水合水的结构、动力学和振动性质对压力的敏感性低于体相水,从而证明了蛋白质表面对水合水的强烈影响。