Suppr超能文献

杂乱无章的接触和增强的动力学增加了 engrailed 同源结构域工程变体的热稳定性。

Promiscuous contacts and heightened dynamics increase thermostability in an engineered variant of the engrailed homeodomain.

机构信息

Biomolecular Structure and Design Program, University of Washington, Seattle, WA 98195-5013, USA.

出版信息

Protein Eng Des Sel. 2013 Jan;26(1):35-45. doi: 10.1093/protein/gzs063. Epub 2012 Sep 25.

Abstract

A thermostabilized variant (UVF) of the engrailed homeodomain (EnHD) was previously engineered by Mayo and co-workers. The melting temperature of the non-natural, designed protein is 50°C higher than the natural wild-type protein (>99 vs. 52°C), and the two proteins share 22% sequence identity. We have performed extensive (1 μs) all-atom, explicit solvent molecular dynamics simulations of the wild-type and engineered proteins to investigate their structural and dynamic properties at room temperature and at 100°C. Our simulations are in good agreement with nuclear magnetic resonance data available for the two proteins [nuclear Overhauser effect crosspeaks (NOEs), J-coupling constants and order parameters for EnHD; and NOEs for UVF], showing that we reproduce the backbone dynamics and side chain packing in the native state of both proteins. UVF was more dynamic at room temperature than EnHD, with respect to both its backbone and side chain motion. When the temperature was raised, the thermostable protein maintained this mobility while retaining its native conformation. EnHD, on the other hand, was unable to maintain its more rigid native structure at higher temperature and began to unfold. Heightened protein dynamics leading to promiscuous and dynamically interchangeable amino acid contacts makes UVF more tolerant to increasing temperature, providing a molecular explanation for heightened thermostability of this protein.

摘要

梅奥等人之前设计并工程化了 engrailed 同源域(EnHD)的热稳定变体(UVF)。与天然野生型蛋白质相比,非天然设计的蛋白质的熔点高 50°C(>99°C 对 52°C),且两种蛋白质具有 22%的序列同一性。我们对野生型和工程化蛋白质进行了广泛的(1 μs)全原子、显式溶剂分子动力学模拟,以研究它们在室温下和 100°C 时的结构和动态特性。我们的模拟与可用于这两种蛋白质的核磁共振数据(EnHD 的核奥弗豪瑟效应交叉峰(NOE)、J 耦合常数和有序参数;以及 UVF 的 NOE)非常吻合,表明我们再现了两种蛋白质天然状态下的骨架动力学和侧链堆积。与 EnHD 相比,UVF 在室温下的骨架和侧链运动都更具动态性。当温度升高时,热稳定的蛋白质在保持其天然构象的同时保持这种流动性。另一方面,EnHD 无法在更高温度下保持其更刚性的天然结构,并开始展开。蛋白质动力学的增强导致混杂和动态可互换的氨基酸接触,使 UVF 能够更好地耐受温度升高,为这种蛋白质的高耐热性提供了分子解释。

相似文献

1
Promiscuous contacts and heightened dynamics increase thermostability in an engineered variant of the engrailed homeodomain.
Protein Eng Des Sel. 2013 Jan;26(1):35-45. doi: 10.1093/protein/gzs063. Epub 2012 Sep 25.
2
A Dynamic Hydrophobic Core and Surface Salt Bridges Thermostabilize a Designed Three-Helix Bundle.
Biophys J. 2019 Feb 19;116(4):621-632. doi: 10.1016/j.bpj.2019.01.012. Epub 2019 Jan 12.
3
Thermostabilization mechanisms in thermophilic versus mesophilic three-helix bundle proteins.
J Comput Chem. 2022 Jan 30;43(3):197-205. doi: 10.1002/jcc.26782. Epub 2021 Nov 5.
4
Anionic lipids induce a fold-unfold transition in the membrane-translocating Engrailed homeodomain.
Biochim Biophys Acta Biomembr. 2022 Nov 1;1864(11):184030. doi: 10.1016/j.bbamem.2022.184030. Epub 2022 Aug 18.
5
Insights into the folding pathway of the Engrailed Homeodomain protein using replica exchange molecular dynamics simulations.
J Mol Graph Model. 2010 Nov;29(3):481-91. doi: 10.1016/j.jmgm.2010.09.007. Epub 2010 Oct 8.
6
Full-sequence computational design and solution structure of a thermostable protein variant.
J Mol Biol. 2007 Sep 7;372(1):1-6. doi: 10.1016/j.jmb.2007.06.032. Epub 2007 Jun 16.
7
Comparison of multiple crystal structures with NMR data for engrailed homeodomain.
J Biomol NMR. 2008 Mar;40(3):189-202. doi: 10.1007/s10858-008-9223-9. Epub 2008 Feb 15.
8
Malleability of folding intermediates in the homeodomain superfamily.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5596-601. doi: 10.1073/pnas.1101752108. Epub 2011 Mar 21.
9
Thermodynamic Protein Destabilization by GFP Tagging: A Case of Interdomain Allostery.
Biophys J. 2015 Sep 15;109(6):1157-62. doi: 10.1016/j.bpj.2015.04.032. Epub 2015 May 18.
10
Validating Molecular Dynamics Simulations against Experimental Observables in Light of Underlying Conformational Ensembles.
J Phys Chem B. 2018 Jul 5;122(26):6673-6689. doi: 10.1021/acs.jpcb.8b02144. Epub 2018 Jun 21.

引用本文的文献

1
2
The stability and dynamics of computationally designed proteins.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac001.
3
Thermostabilization mechanisms in thermophilic versus mesophilic three-helix bundle proteins.
J Comput Chem. 2022 Jan 30;43(3):197-205. doi: 10.1002/jcc.26782. Epub 2021 Nov 5.
4
A Dynamic Hydrophobic Core and Surface Salt Bridges Thermostabilize a Designed Three-Helix Bundle.
Biophys J. 2019 Feb 19;116(4):621-632. doi: 10.1016/j.bpj.2019.01.012. Epub 2019 Jan 12.
5
Interface matters: the stiffness route to stability of a thermophilic tetrameric malate dehydrogenase.
PLoS One. 2014 Dec 1;9(12):e113895. doi: 10.1371/journal.pone.0113895. eCollection 2014.
6
How conformational flexibility stabilizes the hyperthermophilic elongation factor G-domain.
J Phys Chem B. 2013 Nov 7;117(44):13775-85. doi: 10.1021/jp407078z. Epub 2013 Oct 24.

本文引用的文献

1
Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding.
PLoS One. 2011;6(6):e21624. doi: 10.1371/journal.pone.0021624. Epub 2011 Jun 24.
2
Refolding the engrailed homeodomain: structural basis for the accumulation of a folding intermediate.
Biophys J. 2010 Sep 8;99(5):1628-36. doi: 10.1016/j.bpj.2010.06.040.
3
The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12259-64. doi: 10.1073/pnas.0706527105. Epub 2008 Aug 19.
4
Microscopic reversibility of protein folding in molecular dynamics simulations of the engrailed homeodomain.
Biochemistry. 2008 Jul 8;47(27):7079-89. doi: 10.1021/bi800118b. Epub 2008 Jun 14.
5
Comparison of multiple crystal structures with NMR data for engrailed homeodomain.
J Biomol NMR. 2008 Mar;40(3):189-202. doi: 10.1007/s10858-008-9223-9. Epub 2008 Feb 15.
6
Full-sequence computational design and solution structure of a thermostable protein variant.
J Mol Biol. 2007 Sep 7;372(1):1-6. doi: 10.1016/j.jmb.2007.06.032. Epub 2007 Jun 16.
7
Protein stability and surface electrostatics: a charged relationship.
Biochemistry. 2006 Mar 7;45(9):2761-6. doi: 10.1021/bi0600143.
9
Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.
Biochemistry. 2005 Jan 18;44(2):609-16. doi: 10.1021/bi0486381.
10
Diffusing and colliding: the atomic level folding/unfolding pathway of a small helical protein.
J Mol Biol. 2004 Aug 20;341(4):1109-24. doi: 10.1016/j.jmb.2004.06.074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验