Suppr超能文献

动态疏水性核心和表面盐桥稳定设计的三螺旋束。

A Dynamic Hydrophobic Core and Surface Salt Bridges Thermostabilize a Designed Three-Helix Bundle.

机构信息

Department of Biology, Santa Clara University, Santa Clara, California.

Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.

出版信息

Biophys J. 2019 Feb 19;116(4):621-632. doi: 10.1016/j.bpj.2019.01.012. Epub 2019 Jan 12.

Abstract

Thermostable proteins are advantageous in industrial applications, as pharmaceuticals or biosensors, and as templates for directed evolution. As protein-design methodologies improve, bioengineers are able to design proteins to perform a desired function. Although many rationally designed proteins end up being thermostable, how to intentionally design de novo, thermostable proteins is less clear. UVF is a de novo-designed protein based on the backbone structure of the Engrailed homeodomain (EnHD) and is highly thermostable (T > 99°C vs. 52°C for EnHD). Although most proteins generally have polar amino acids on their surfaces and hydrophobic amino acids buried in their cores, protein engineers followed this rule exactly when designing UVF. To investigate the contributions of the fully hydrophobic core versus the fully polar surface to UVF's thermostability, we built two hybrid, chimeric proteins combining the sets of buried and surface residues from UVF and EnHD. Here, we determined a structural, dynamic, and thermodynamic explanation for UVF's thermostability by performing 4 μs of all-atom, explicit-solvent molecular dynamics simulations at 25 and 100°C, Tanford-Kirkwood solvent accessibility Monte Carlo electrostatic calculations, and a thermodynamic analysis of 40 temperature runs by the weighted-histogram analysis method of heavy-atom, structure-based models of UVF, EnHD, and both chimeric proteins. Our models showed that UVF was highly dynamic because of its fully hydrophobic core, leading to a smaller loss of entropy upon folding. The charged residues on its surface made favorable electrostatic interactions that contributed enthalpically to its thermostability. In the chimeric proteins, both the hydrophobic core and charged surface independently imparted thermostability.

摘要

热稳定蛋白在工业应用中很有优势,例如在制药或生物传感器领域,以及作为定向进化的模板。随着蛋白质设计方法的改进,生物工程师能够设计出具有特定功能的蛋白质。尽管许多经过合理设计的蛋白质最终具有热稳定性,但如何有目的地设计全新的、热稳定的蛋白质还不太清楚。UVF 是一种基于 engrailed 同源域(EnHD)骨架结构设计的全新蛋白质,具有很高的热稳定性(T > 99°C 对比 EnHD 的 52°C)。尽管大多数蛋白质通常在其表面具有极性氨基酸,而在其核心区域具有疏水性氨基酸,但蛋白质工程师在设计 UVF 时完全遵循了这一规则。为了研究完全疏水核心与完全极性表面对 UVF 热稳定性的贡献,我们构建了两种杂交嵌合蛋白,将 UVF 和 EnHD 的埋藏和表面残基组合在一起。在这里,我们通过在 25°C 和 100°C 下进行 4 μs 的全原子、显式溶剂分子动力学模拟、Tanford-Kirkwood 溶剂可及性蒙特卡罗静电计算以及通过加权直方图分析方法对 40 个温度运行的热力学分析,为 UVF 的热稳定性提供了结构、动态和热力学解释。我们的模型表明,由于其完全疏水的核心,UVF 具有很高的动态性,导致折叠时熵的损失较小。其表面上的带电残基形成有利的静电相互作用,从焓的角度为其热稳定性做出了贡献。在嵌合蛋白中,疏水核心和带电表面都独立地赋予了热稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验