Suppr超能文献

用于研究 siRNA 纳米颗粒细胞内转运的 siRNA 探针的开发。

Development of siRNA-probes for studying intracellular trafficking of siRNA nanoparticles.

机构信息

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA.

出版信息

Integr Biol (Camb). 2013 Jan;5(1):224-30. doi: 10.1039/c2ib20155k.

Abstract

One important barrier facing the delivery of short interfering RNAs (siRNAs) via synthetic nanoparticles is the rate of nanoparticle disassembly. However, our ability to optimize the release kinetics of siRNAs from nanoparticles for maximum efficacy is limited by the lack of methods to track their intracellular disassembly. Towards this end, we describe the design of two different siRNA-based fluorescent probes whose fluorescence emission changes in response to the assembly state of the nanoparticle. The first probe design involves a redox-sensitive fluorescence-quenched probe that fluoresces only when the nanoparticle is disassembled in a reductive environment. The second probe design is based on a FRET-labeled siRNA pair that fluoresces due to the proximity of the siRNA pair when the nanoparticle is intact. In both approaches, the delivery vehicle need not be labeled. The utility of these probes was investigated with a lipidoid nanoparticle (LNP) as proof-of-concept in both extracellular and intracellular environments. Fluorescence kinetic data from both probes were fit to a two-phase release and decay curve and subsequently quantified to give intracellular disassembly rate constants. Quantitative analysis revealed that the rate constant of siRNA release measured via the fluorescence-quenched probe was almost identical to the rate constant for nanoparticle disassembly measured via the FRET-labeled probes. Furthermore, these probes were utilized to determine subcellular localization of LNPs with the use of automated high-resolution microscopy as they undergo dissociation. Interestingly, this work shows that large amounts of siRNA remain inside vesicular compartments. Altogether, we have developed new siRNA probes that can be utilized with multiple nanocarriers for quantitative and qualitative analysis of nanoparticle dissociation that may serve as a design tool for future delivery systems.

摘要

一种重要的障碍是通过合成纳米粒子传递短干扰 RNA(siRNAs) 的速度纳米粒子的解体。然而,我们优化 siRNA 从纳米粒子中释放动力学以达到最大疗效的能力受到缺乏方法的限制来跟踪它们的细胞内解体。为此,我们描述了两种不同的基于 siRNA 的荧光探针的设计,其荧光发射响应纳米粒子的组装状态而变化。第一种探针设计涉及一种氧化还原敏感的荧光猝灭探针,只有在纳米粒子在还原环境中解组装时才会发光。第二种探针设计基于 FRET 标记的 siRNA 对,当纳米粒子完整时,由于 siRNA 对的接近而发光。在这两种方法中,输送载体不需要标记。我们用脂质体纳米颗粒 (LNP) 作为概念验证,在细胞外和细胞内环境中研究了这些探针的实用性。来自两种探针的荧光动力学数据拟合到两相释放和衰减曲线,并随后进行定量分析以给出细胞内解组装速率常数。定量分析表明,通过荧光猝灭探针测量的 siRNA 释放速率常数与通过 FRET 标记探针测量的纳米粒子解组装速率常数几乎相同。此外,这些探针还用于通过自动高分辨率显微镜确定 LNPs 的亚细胞定位,因为它们发生解离。有趣的是,这项工作表明大量的 siRNA 仍然留在囊泡隔间内。总之,我们已经开发了新的 siRNA 探针,可与多种纳米载体一起用于定量和定性分析纳米粒子的解离,这可能成为未来输送系统的设计工具。

相似文献

1
Development of siRNA-probes for studying intracellular trafficking of siRNA nanoparticles.
Integr Biol (Camb). 2013 Jan;5(1):224-30. doi: 10.1039/c2ib20155k.
2
FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes.
ACS Nano. 2012 Jul 24;6(7):6133-41. doi: 10.1021/nn3013838. Epub 2012 Jun 22.
3
Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells.
AAPS J. 2021 Dec 6;24(1):8. doi: 10.1208/s12248-021-00653-2.
5
Determination of the interior pH of lipid nanoparticles using a pH-sensitive fluorescent dye-based DNA probe.
Biosens Bioelectron. 2024 May 1;251:116065. doi: 10.1016/j.bios.2024.116065. Epub 2024 Jan 24.
7
In vivo imaging of the systemic delivery of small interfering RNA.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Jul-Aug;4(4):428-37. doi: 10.1002/wnan.1158. Epub 2012 Jan 6.
8
Quantitation of physiological and biochemical barriers to siRNA liver delivery via lipid nanoparticle platform.
Mol Pharm. 2014 May 5;11(5):1424-34. doi: 10.1021/mp400584h. Epub 2014 Apr 1.
9
Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape.
Nat Biotechnol. 2013 Jul;31(7):638-46. doi: 10.1038/nbt.2612. Epub 2013 Jun 23.
10
Kinetic analysis of the intracellular processing of siRNAs by confocal microscopy.
Microscopy (Oxf). 2020 Dec 3;69(6):401-407. doi: 10.1093/jmicro/dfaa031.

引用本文的文献

3
Assessing the gene silencing potential of AuNP-based approaches on conventional 2D cell culture versus 3D tumor spheroid.
Front Bioeng Biotechnol. 2024 Feb 12;12:1320729. doi: 10.3389/fbioe.2024.1320729. eCollection 2024.
4
Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics.
Adv Drug Deliv Rev. 2022 May;184:114236. doi: 10.1016/j.addr.2022.114236. Epub 2022 Mar 26.
5
Simple FRET Electrophoresis Method for Precise and Dynamic Evaluation of Serum siRNA Stability.
ACS Med Chem Lett. 2020 Jan 17;11(2):195-202. doi: 10.1021/acsmedchemlett.9b00472. eCollection 2020 Feb 13.
6
Strategies, design, and chemistry in siRNA delivery systems.
Adv Drug Deliv Rev. 2019 Apr;144:133-147. doi: 10.1016/j.addr.2019.05.004. Epub 2019 May 15.
7
Delivery Pathway Regulation of 3',3″-Bis-Peptide-siRNA Conjugate via Nanocarrier Architecture Engineering.
Mol Ther Nucleic Acids. 2018 Mar 2;10:75-90. doi: 10.1016/j.omtn.2017.11.002. Epub 2017 Nov 14.
8
Intracellular trafficking and exocytosis of a multi-component siRNA nanocomplex.
Nanomedicine. 2016 Jul;12(5):1323-34. doi: 10.1016/j.nano.2016.02.003. Epub 2016 Mar 10.
9
Nanoparticles and their applications in cell and molecular biology.
Integr Biol (Camb). 2014 Jan;6(1):9-26. doi: 10.1039/c3ib40165k.

本文引用的文献

1
FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes.
ACS Nano. 2012 Jul 24;6(7):6133-41. doi: 10.1021/nn3013838. Epub 2012 Jun 22.
2
Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors.
Nanomedicine (Lond). 2012 Apr;7(4):565-77. doi: 10.2217/nnm.12.28.
3
Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise.
Acc Chem Res. 2012 Jul 17;45(7):1005-13. doi: 10.1021/ar2002232. Epub 2011 Dec 22.
4
Hepatocyte-targeting single galactose-appended naphthalimide: a tool for intracellular thiol imaging in vivo.
J Am Chem Soc. 2012 Jan 18;134(2):1316-22. doi: 10.1021/ja210065g. Epub 2012 Jan 3.
6
Highly efficient gene silencing activity of siRNA embedded in a nanostructured gyroid cubic lipid matrix.
J Am Chem Soc. 2010 Dec 1;132(47):16841-7. doi: 10.1021/ja1059763. Epub 2010 Oct 28.
7
Lipid-like materials for low-dose, in vivo gene silencing.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1864-9. doi: 10.1073/pnas.0910603106. Epub 2010 Jan 11.
9
Upconversion nanoparticle-based FRET system for study of siRNA in live cells.
Langmuir. 2010 May 4;26(9):6689-94. doi: 10.1021/la904011q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验