Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, P.O.B. 521, Szeged 6701, Hungary.
Eur Biophys J. 2012 Nov;41(11):959-68. doi: 10.1007/s00249-012-0854-0. Epub 2012 Sep 27.
In our previous paper (Nagy et al. in J Biol Chem 285:38811-38817, 2010) by using a multilayered model system, we showed that, from α-casein, aggregates (similar to natural casein micelles) can be built up step by step if Ca-phosphate nanocluster incorporation is ensured between the protein adsorption steps. It remained, however, an open question whether the growth of the aggregates can be terminated, similarly to in nature with casein micelles. Here, we show that, in the presence of Ca-phosphate nanoclusters, upon adsorbing onto earlier α-casein surfaces, the secondary structure of α-casein remains practically unaffected, but κ-casein exhibits considerable changes in its secondary structure as manifested by a shift toward having more β-structures. In the absence of Ca-phosphate, only κ-casein can still adsorb onto the underlying casein surface; this κ-casein also expresses considerable shift toward β-structures. In addition, this κ-casein cover terminates casein aggregation; no further adsorption of either α- or κ-casein can be achieved. These results, while obtained on a model system, may show that the Ca-insensitive κ-casein can, indeed, be the outer layer of the casein micelles, not only because of its "hairy" extrusion into the water phase, but because of its "softer" secondary structure, which can "occlude" the interacting motifs serving casein aggregation. We think that the revealed nature of the molecular interactions, and the growth mechanism found here, might be useful to understand the aggregation process of casein micelles also in vivo.
在我们之前的一篇论文(Nagy 等人,《生物化学杂志》285:38811-38817,2010)中,通过使用多层模型系统,我们表明,如果在蛋白质吸附步骤之间确保钙-磷酸盐纳米簇的掺入,那么可以逐步构建从α-酪蛋白开始的聚集物(类似于天然酪蛋白胶束)。然而,是否可以像在天然情况下那样终止聚集物的生长仍然是一个悬而未决的问题。在这里,我们表明,在存在钙-磷酸盐纳米簇的情况下,当吸附到早先的α-酪蛋白表面时,α-酪蛋白的二级结构实际上不受影响,但κ-酪蛋白的二级结构会发生相当大的变化,表现为β-结构的比例增加。在没有钙-磷酸盐的情况下,只有κ-酪蛋白仍然可以吸附到下面的酪蛋白表面;这种κ-酪蛋白也表现出相当大的β-结构转变。此外,这种κ-酪蛋白覆盖层终止了酪蛋白聚集;α-或κ-酪蛋白都不能进一步吸附。这些结果虽然是在模型系统上获得的,但可能表明,钙不敏感的κ-酪蛋白确实可以成为酪蛋白胶束的外层,不仅因为它“毛茸茸”地挤出到水相,还因为它“柔软”的二级结构可以“阻塞”用于酪蛋白聚集的相互作用基序。我们认为,这里揭示的分子相互作用的性质和发现的生长机制可能有助于理解体内酪蛋白胶束的聚集过程。