Kumosinski T F, Farrell H M
USDA, Eastern Regional Research Center, Philadelphia, Pennsylvania 19118.
J Protein Chem. 1991 Feb;10(1):3-16. doi: 10.1007/BF01024650.
The caseins occur in milk as colloidal complexes of protein aggregates, calcium, and inorganic phosphate. As determined by electron microscopy, these particles are spherical and have approximately a 650 A radius (casein micelles). In the absence of calcium, the protein aggregates themselves (submicelles) have been shown to result from mainly hydrophobic interactions. The fractional concentration of stable colloidal casein micelles can be obtained in a calcium caseinate solution by centrifugation at 1500 g. Thus, the amount of stable colloid present with varying Ca2+ concentrations can be determined and then analyzed by application of equations derived from Wyman's Thermodynamic Linkage Theory. Ca(2+)-induced colloid stability profiles were obtained experimentally for model micelles consisting of only alpha s1- (a calcium insoluble casein) and the stabilizing protein kappa-casein, eliminating the complications arising from beta- and minor casein forms. Two distinct genetic variants alpha s1-A and B were used. Analysis of alpha s1-A colloid stability profiles yielded a precipitation (salting-out) constant k1, as well as colloid stability (salting-in) parameter k2. No variations of k1 or k2 were found with increasing amounts of kappa-casein. From the variation of the amount of colloidal casein capable of being stabilized vs. amount of added kappa-casein an association constant of 4 L/g could be calculated for the complexation of alpha s1-A and kappa-casein. For the alpha s1-B and kappa-casein micelles, an additional Ca(2+)-dependent colloidal destabilization parameter, k3, was added to the existing k1 and k2 parameters in order to fully describe this more complex system. Furthermore, the value of k3 decreased with increasing concentration of kappa-casein. These results were analyzed with respect to the specific deletion which occurs in alpha s1-casein A in order to determine the sites responsible for these Ca(2+)-induced quaternary structural effects.
酪蛋白以蛋白质聚集体、钙和无机磷酸盐的胶体复合物形式存在于牛奶中。通过电子显微镜测定,这些颗粒呈球形,半径约为650埃(酪蛋白胶粒)。在没有钙的情况下,已证明蛋白质聚集体本身(亚胶粒)主要是由疏水相互作用形成的。通过在1500g下离心,可以在酪蛋白钙溶液中获得稳定的胶体酪蛋白胶粒的分数浓度。因此,可以确定不同Ca2+浓度下存在的稳定胶体的量,然后通过应用从怀曼热力学连锁理论推导的方程进行分析。通过实验获得了仅由αs1-(一种钙不溶性酪蛋白)和稳定蛋白κ-酪蛋白组成的模型胶粒的Ca(2+)诱导的胶体稳定性曲线,消除了由β-酪蛋白和微量酪蛋白形式引起的复杂性。使用了两种不同的遗传变体αs1-A和B。对αs1-A胶体稳定性曲线的分析得出了沉淀(盐析)常数k1以及胶体稳定性(盐溶)参数k2。随着κ-酪蛋白量的增加,未发现k1或k2有变化。根据能够被稳定的胶体酪蛋白量与添加的κ-酪蛋白量的变化,可以计算出αs1-A与κ-酪蛋白络合的缔合常数为4L/g。对于αs1-B和κ-酪蛋白胶粒,为了充分描述这个更复杂的系统,在现有的k1和k2参数中增加了一个额外的Ca(2+)依赖性胶体去稳定化参数k3。此外,k3的值随着κ-酪蛋白浓度的增加而降低。针对αs1-酪蛋白A中发生的特定缺失对这些结果进行了分析,以确定负责这些Ca(2+)诱导的四级结构效应的位点。