Department of Infectious Diseases, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.
J Virol. 2012 Dec;86(24):13384-96. doi: 10.1128/JVI.07234-11. Epub 2012 Sep 26.
Tipranavir (TPV), a protease inhibitor (PI) inhibiting the enzymatic activity and dimerization of HIV-1 protease, exerts potent activity against multi-PI-resistant HIV-1 isolates. When a mixture of 11 multi-PI-resistant (but TPV-sensitive) clinical isolates (HIV(11MIX)), which included HIV(B) and HIV(C), was selected against TPV, HIV(11MIX) rapidly (by 10 passages [HIV(11MIX)(P10)]) acquired high-level TPV resistance and replicated at high concentrations of TPV. HIV(11MIX)(P10) contained various amino acid substitutions, including I54V and V82T. The intermolecular FRET-based HIV-1 expression assay revealed that TPV's dimerization inhibition activity against cloned HIV(B) (cHIV(B)) was substantially compromised. The introduction of I54V/V82T into wild-type cHIV(NL4-3) (cHIV(NL4-3(I54V/V82T))) did not block TPV's dimerization inhibition or confer TPV resistance. However, the introduction of I54V/V82T into cHIV(B) (cHIV(B)(I54V/V82T)) compromised TPV's dimerization inhibition and cHIV(B)(I54V/V82T) proved to be significantly TPV resistant. L24M was responsible for TPV resistance with the cHIV(C) genetic background. The introduction of L24M into cHIV(NL4-3) (cHIV(NL4-3(L24M))) interfered with TPV's dimerization inhibition, while L24M increased HIV-1's susceptibility to TPV with the HIV(NL4-3) genetic background. When selected with TPV, cHIV(NL4-3(I54V/V82T)) most readily developed TPV resistance and acquired E34D, which compromised TPV's dimerization inhibition with the HIV(NL4-3) genetic background. The present data demonstrate that certain amino acid substitutions compromise TPV's dimerization inhibition and confer TPV resistance, although the loss of TPV's dimerization inhibition is not always associated with significantly increased TPV resistance. The findings that TPV's dimerization inhibition is compromised with one or two amino acid substitutions may explain at least in part why the genetic barrier of TPV against HIV-1's development of TPV resistance is relatively low compared to that of darunavir.
替拉那韦(TPV)是一种蛋白酶抑制剂(PI),可抑制 HIV-1 蛋白酶的酶活性和二聚化,对多种 PI 耐药的 HIV-1 分离株具有很强的活性。当选择 TPV 对 11 种多 PI 耐药(但 TPV 敏感)的临床分离株(HIV(11MIX))进行混合时,包括 HIV(B) 和 HIV(C),HIV(11MIX) 迅速(经过 10 次传代[HIV(11MIX)(P10)])获得了高水平的 TPV 耐药性,并在高浓度的 TPV 下复制。HIV(11MIX)(P10) 包含各种氨基酸取代,包括 I54V 和 V82T。基于分子间 FRET 的 HIV-1 表达测定显示,TPV 对克隆的 HIV(B)(cHIV(B))的二聚化抑制活性大大受损。将 I54V/V82T 引入野生型 cHIV(NL4-3)(cHIV(NL4-3(I54V/V82T))))并没有阻断 TPV 的二聚化抑制作用,也没有赋予 TPV 耐药性。然而,将 I54V/V82T 引入 cHIV(B)(cHIV(B)(I54V/V82T))))会损害 TPV 的二聚化抑制作用,并且 cHIV(B)(I54V/V82T))被证明对 TPV 具有显著的耐药性。L24M 是 cHIV(C)遗传背景下 TPV 耐药的原因。将 L24M 引入 cHIV(NL4-3)(cHIV(NL4-3(L24M))))干扰了 TPV 的二聚化抑制作用,而 L24M 增加了 HIV-1 对 TPV 的敏感性,同时保留了 HIV(NL4-3) 的遗传背景。当用 TPV 选择时,cHIV(NL4-3(I54V/V82T))最容易获得 TPV 耐药性,并获得 E34D,这会损害 TPV 与 HIV(NL4-3)遗传背景的二聚化抑制作用。本数据表明,某些氨基酸取代会损害 TPV 的二聚化抑制作用并赋予 TPV 耐药性,尽管 TPV 的二聚化抑制作用丧失并不总是与 TPV 耐药性显著增加相关。TPV 的二聚化抑制作用仅通过一个或两个氨基酸取代就会受损的发现,至少部分解释了为什么与 darunavir 相比,TPV 对 HIV-1 发展 TPV 耐药性的遗传屏障相对较低。