Department of Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan.
J Virol. 2010 Nov;84(22):11961-9. doi: 10.1128/JVI.00967-10. Epub 2010 Sep 1.
We attempted to select HIV-1 variants resistant to darunavir (DRV), which potently inhibits the enzymatic activity and dimerization of protease and has a high genetic barrier to HIV-1 development of resistance to DRV. We conducted selection using a mixture of 8 highly multi-protease inhibitor (PI)-resistant, DRV-susceptible clinical HIV-1 variants (HIV-1(MIX)) containing 9 to 14 PI resistance-associated amino acid substitutions in protease. HIV-1(MIX) became highly resistant to DRV, with a 50% effective concentration (EC(50)) ∼333-fold greater than that against HIV-1(NL4-3). HIV-1(MIX) at passage 51 (HIV-1(MIX(P51))) replicated well in the presence of 5 μM DRV and contained 14 mutations. HIV-1(MIX(P51)) was highly resistant to amprenavir, indinavir, nelfinavir, ritonavir, lopinavir, and atazanavir and moderately resistant to saquinavir and tipranavir. HIV-1(MIX(P51)) had a resemblance with HIV-1(C) of the HIV-1(MIX) population, and selection using HIV-1(C) was also performed; however, its DRV resistance acquisition was substantially delayed. The H219Q and I223V substitutions in Gag, lacking in HIV-1(C(P51)), likely contributed to conferring a replication advantage on HIV-1(MIX(P51)) by reducing intravirion cyclophilin A content. HIV-1(MIX(P51)) apparently acquired the substitutions from another HIV-1 strain(s) of HIV-1(MIX) through possible homologous recombination. The present data suggest that the use of multiple drug-resistant HIV-1 isolates is of utility in selecting drug-resistant variants and that DRV would not easily permit HIV-1 to develop significant resistance; however, HIV-1 can develop high levels of DRV resistance when a variety of PI-resistant HIV-1 strains are generated, as seen in patients experiencing sequential PI failure, and ensuing homologous recombination takes place. HIV-1(MIX(P51)) should be useful in elucidating the mechanisms of HIV-1 resistance to DRV and related agents.
我们试图选择对达芦那韦(DRV)具有耐药性的 HIV-1 变异体,DRV 可强效抑制蛋白酶的酶活性和二聚化作用,且对 HIV-1 对 DRV 产生耐药性具有较高的遗传屏障。我们使用包含蛋白酶中 9 至 14 个与耐药性相关的氨基酸取代的 8 种高度多蛋白酶抑制剂(PI)耐药、DRV 敏感的临床 HIV-1 变异体(HIV-1(MIX))混合物进行选择。HIV-1(MIX)对 DRV 的耐药性显著增强,其 50%有效浓度(EC(50))比 HIV-1(NL4-3)增加了约 333 倍。在 5 μM DRV 存在的情况下,第 51 代 HIV-1(MIX(P51))(HIV-1(MIX(P51)))复制良好,且含有 14 个突变。HIV-1(MIX(P51))对安普那韦、茚地那韦、奈非那韦、利托那韦、洛匹那韦和阿扎那韦高度耐药,对沙奎那韦和替拉那韦中度耐药。HIV-1(MIX(P51))与 HIV-1(MIX)人群中的 HIV-1(C)相似,我们也对其进行了选择;然而,其对 DRV 的耐药性获得明显延迟。HIV-1(MIX(P51))中 Gag 中的 H219Q 和 I223V 取代,缺少于 HIV-1(C(P51))中,可能通过降低病毒内亲环素 A 含量,赋予 HIV-1(MIX(P51))复制优势。HIV-1(MIX(P51))显然从 HIV-1(MIX)中的另一种 HIV-1 株获得了这些取代,可能通过同源重组。本数据表明,使用多种耐药性 HIV-1 分离株选择耐药变异体是有用的,DRV 不易使 HIV-1 产生显著耐药性;然而,当产生多种 PI 耐药性 HIV-1 株时,如在经历序贯 PI 失败的患者中,会出现 HIV-1 产生高水平的 DRV 耐药性,随后发生同源重组。HIV-1(MIX(P51))应有助于阐明 HIV-1 对 DRV 和相关药物的耐药机制。