文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

酶诱导还原法制备的银纳米粒子的形态。

The morphology of silver nanoparticles prepared by enzyme-induced reduction.

机构信息

IPHT - Institute for Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany.

出版信息

Beilstein J Nanotechnol. 2012;3:404-14. doi: 10.3762/bjnano.3.47. Epub 2012 May 18.


DOI:10.3762/bjnano.3.47
PMID:23016145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3388365/
Abstract

Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silver-nanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis.

摘要

银纳米粒子通过在固体基底上的酶诱导生长过程合成。为了将酶促生长的纳米粒子(EGNP)定制用于生物分子研究中的分析应用,对银纳米粒子的形成、形态和化学组成的时间演变进行了详细研究。因此,使用扫描和透射电子显微镜研究了不同密度的银纳米粒子薄膜,以检查它们的结构。此外,通过能量色散 X 射线光谱法对用于透射电子显微镜分析的银纳米粒子的横截面进行了研究,以探测其化学组成。通过卢瑟福背散射光谱法确定了具有银纳米粒子的基底的表面覆盖率和最大颗粒高度。观察到银纳米粒子薄膜随合成条件变化而变化。在初始生长状态之后,银纳米粒子表现出所谓的沙漠玫瑰或纳米花状结构。这种复杂的纳米粒子结构与自催化生长的球形粒子形成鲜明对比,后者在增加直径的同时保持其整体几何形状。结果表明,沙漠玫瑰状银纳米粒子由纯银的单晶片组成。由于银纳米粒子的异常粗糙表面结构,其表面增强拉曼光谱(SERS)活性很有前途。作为定量分析的示例应用,展示了在银纳米粒子上孵育的维生素核黄素的 SERS 测量结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/aae67aad3e3d/Beilstein_J_Nanotechnol-03-404-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/eaa7444ecd2a/Beilstein_J_Nanotechnol-03-404-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/8f4855dfd6e2/Beilstein_J_Nanotechnol-03-404-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/e8f586651306/Beilstein_J_Nanotechnol-03-404-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/6cc256e13302/Beilstein_J_Nanotechnol-03-404-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/40abe1577549/Beilstein_J_Nanotechnol-03-404-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/612925b8e8b9/Beilstein_J_Nanotechnol-03-404-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/f3221fecf945/Beilstein_J_Nanotechnol-03-404-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/3b688d17ff72/Beilstein_J_Nanotechnol-03-404-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/aae67aad3e3d/Beilstein_J_Nanotechnol-03-404-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/eaa7444ecd2a/Beilstein_J_Nanotechnol-03-404-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/8f4855dfd6e2/Beilstein_J_Nanotechnol-03-404-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/e8f586651306/Beilstein_J_Nanotechnol-03-404-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/6cc256e13302/Beilstein_J_Nanotechnol-03-404-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/40abe1577549/Beilstein_J_Nanotechnol-03-404-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/612925b8e8b9/Beilstein_J_Nanotechnol-03-404-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/f3221fecf945/Beilstein_J_Nanotechnol-03-404-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/3b688d17ff72/Beilstein_J_Nanotechnol-03-404-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d7/3388365/aae67aad3e3d/Beilstein_J_Nanotechnol-03-404-g010.jpg

相似文献

[1]
The morphology of silver nanoparticles prepared by enzyme-induced reduction.

Beilstein J Nanotechnol. 2012-5-18

[2]
Cubic Silver Nanoparticles Fixed on TiO Nanotubes as Simple and Efficient Substrates for Surface Enhanced Raman Scattering.

Materials (Basel). 2019-10-16

[3]
Synthesis, properties, and surface enhanced Raman scattering of gold and silver nanoparticles in chitosan matrix.

J Nanosci Nanotechnol. 2009-4

[4]
Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

Mater Sci Eng C Mater Biol Appl. 2016-12-1

[5]
Biogenic Ag Nanoparticles from Neem Extract: Their Structural Evaluation and Antimicrobial Effects against and (NII 08123).

ACS Biomater Sci Eng. 2020-1-13

[6]
Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.

Chemphyschem. 2008-4-21

[7]
Synthesis of silver and silver/gold anisotropic nanostructures for surface enhanced Raman spectroscopy applications.

J Nanosci Nanotechnol. 2013-12

[8]
A facile strategy for obtaining fresh Ag as SERS active substrates.

J Colloid Interface Sci. 2011-9-29

[9]
Thin and transparent films of graphene/silver nanoparticles obtained at liquid-liquid interfaces: preparation, characterization and application as SERS substrates.

J Colloid Interface Sci. 2015-1-15

[10]
Preparation of a silver nanoparticle-based dual-functional sensor using a complexation-reduction method.

Phys Chem Chem Phys. 2015-9-7

引用本文的文献

[1]
High throughput electronic detection of biomarkers using enzymatically amplified metallization on nanostructured surfaces.

Anal Methods. 2024-11-28

[2]
Silver Nanoparticles: Synthesis, Structure, Properties and Applications.

Nanomaterials (Basel). 2024-8-31

[3]
Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review.

Int J Nanomedicine. 2024

[4]
Enhanced Enzymatically Amplified Metallization on Nanostructured Surfaces for Multiplexed Point-of-Care Electrical Detection of COVID-19 Biomarkers.

Small. 2022-12

[5]
Cubosomes with surface cross-linked chitosan exhibit sustained release and bioavailability enhancement for vinpocetine.

RSC Adv. 2019-2-21

[6]
In Situ Investigation of the Formation Kinematics of Plasma-Generated Silver Nanoparticles.

Nanomaterials (Basel). 2020-3-19

[7]
Fabrication of Interconnected Plasmonic Spherical Silver Nanoparticles with Enhanced Localized Surface Plasmon Resonance (LSPR) Peaks Using Quince Leaf Extract Solution.

Nanomaterials (Basel). 2019-11-2

[8]
Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates.

Beilstein J Nanotechnol. 2019-5-15

[9]
Lignin peroxidase mediated silver nanoparticle synthesis in Acinetobacter sp.

AMB Express. 2017-12-22

[10]
Biosynthesis of silver nanoparticles by leaf extract of Albizia saman (Jacq.) Merr. and their cytotoxic effect on mitotic chromosomes of Drimia indica (Roxb.) Jessop.

Environ Sci Pollut Res Int. 2017-9-21

本文引用的文献

[1]
Metal nanoparticles as labels for heterogeneous, chip-based DNA detection.

Nanotechnology. 2003-12

[2]
Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy.

Nano Lett. 2010-11-19

[3]
Biomolecule-based nanomaterials and nanostructures.

Nano Lett. 2010-10-13

[4]
Silver nanodesert rose as a substrate for surface-enhanced Raman spectroscopy.

ACS Appl Mater Interfaces. 2009-11

[5]
Novel bottom-up SERS substrates for quantitative and parallelized analytics.

Chemphyschem. 2010-2-1

[6]
UV cross-linking of unmodified DNA on glass surfaces.

Anal Bioanal Chem. 2009-10

[7]
Plasmonic nanoprobes for SERS biosensing and bioimaging.

J Biophotonics. 2010-1

[8]
A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering.

Nanotechnology. 2009-6-10

[9]
Spectral response of plasmon resonant nanoparticles with a non-regular shape.

Opt Express. 2000-5-22

[10]
A review for synthesis of nanoflowers.

Recent Pat Nanotechnol. 2008

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索