JBCI, Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Chemphyschem. 2010 Feb 1;11(2):394-8. doi: 10.1002/cphc.200900867.
Surface-enhanced Raman spectroscopy (SERS) is an emerging technology in the field of analytics. Due to the high sensitivity in connection with specific Raman molecular fingerprint information SERS can be used in a variety of analytical, bioanalytical, and biosensing applications. However, for the SERS effect substrates with metal nanostructures are needed. The broad application of this technology is greatly hampered by the lack of reliable and reproducible substrates. Usually the activity of a given substrate has to be determined by time-consuming experiments such as calibration or ultramicroscopic studies. To use SERS as a standard analytical tool, cheap and reproducible substrates are required, preferably with a characterization technique that does not interfere with the subsequent measurements. Herein we introduce an innovative approach to produce low-cost and large-scale reproducible substrates for SERS applications, which allows easy and economical production of micropatterned SERS active surfaces on a large scale. This approach is based on an enzyme-induced growth of silver nanostructures. The special structural feature of the enzymatically deposited silver nanoparticles prevents the breakdown of SERS activity even at high particle densities (particle density >60%) that lead to a conductive layer. In contrast to other approaches, this substrate exhibits a relationship between electrical conductivity and the resulting SERS activity of a given spot. This enables the prediction of the SERS activity of the nanostructure ensemble and therewith the controllable and reproducible production of SERS substrates of enzymatic silver nanoparticles on a large scale, utilizing a simple measurement of the electrical conductivity. Furthermore, through a correlation between the conductivity and the SERS activity of the substrates it is possible to quantify SERS measurements with these substrates.
表面增强拉曼光谱(SERS)是分析领域的一项新兴技术。由于与特定拉曼分子指纹信息相关的高灵敏度,SERS 可用于各种分析、生物分析和生物传感应用。然而,对于 SERS 效应,需要具有金属纳米结构的基底。由于缺乏可靠和可重复的基底,该技术的广泛应用受到了极大的阻碍。通常,必须通过耗时的实验(例如校准或超微研究)来确定给定基底的活性。为了将 SERS 用作标准分析工具,需要廉价且可重复的基底,最好使用不会干扰后续测量的表征技术。在此,我们介绍了一种用于生产 SERS 应用的低成本、大规模可重复基底的创新方法,该方法允许在大规模上轻松且经济地生产微图案化的 SERS 活性表面。该方法基于酶诱导的银纳米结构生长。酶沉积的银纳米粒子的特殊结构特征防止了 SERS 活性的破坏,即使在导致导电层的高颗粒密度(颗粒密度>60%)下也是如此。与其他方法相比,该基底在给定斑点的电导率和相应 SERS 活性之间存在关系。这使得可以预测纳米结构集合的 SERS 活性,从而可以利用电导率的简单测量,在大规模上可控且可重复地生产酶银纳米粒子的 SERS 基底。此外,通过对基底的电导率和 SERS 活性之间的相关性进行分析,可以对这些基底进行 SERS 测量的定量分析。
Chemphyschem. 2010-2-1
J Colloid Interface Sci. 2007-10-15
Appl Spectrosc. 2007-10
Acc Chem Res. 2008-12
Appl Spectrosc. 2006-12
Sensors (Basel). 2021-1-26
Nanomaterials (Basel). 2018-6-3
Adv Mater. 2013-2-25
Beilstein J Nanotechnol. 2012-5-18