Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei, 106, Taiwan, Republic of China.
ACS Appl Mater Interfaces. 2012 Oct 24;4(10):5650-61. doi: 10.1021/am301543h. Epub 2012 Oct 9.
In this study, we synthesized core/shell structures comprising monodisperse 3-μm SiO(2) microspheres and gold nanoparticles (AuNPs, ca. 6.7 nm) as the core and shell components, respectively. Using a layer-by-layer cross-linking process with a dithiol cross-linking agent, we prepared low-permittivity AuNP-encapsulated high-permittivity SiO(2) core/shell microspheres with variable AuNP shell thicknesses. The dispersivity of the microspheres in solution was enhanced after grafting poly(ethylene glycol) monomethyl ether thiol (PEG-SH) onto the AuNP layer on the SiO(2) microspheres. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images revealed sesame ball-like structures for these SiO(2)@AuNP@PEG microspheres. We encapsulated aqueous dispersions of these SiO(2)@AuNP microspheres into sandwich structured displays (SSDs) to investigate their electrorheological properties, observing reversibly electroresponsive transmittance that is ideally suited for display applications. Increasing the thickness of the AuNP layer dramatically enhanced the stringing behavior of the SiO(2) microspheres, resulting in increased transmittance of the SSD. The response time of the electroresponsive electrorheological fluids also decreased significantly after modifying the SiO(2) with the AuNP layers. The effective permittivities of these composites could be predicted from the real (έ) and imaginary (έ́) parts of the Clausius-Mossotti formalism.
在这项研究中,我们合成了核/壳结构,由单分散的 3μm SiO(2) 微球和金纳米粒子(AuNPs,约 6.7nm)分别作为核和壳的组成部分。使用带有二硫醇交联剂的层层交联过程,我们制备了低介电常数的 AuNP 封装的高介电常数 SiO(2) 核/壳微球,具有可变的 AuNP 壳厚度。在将聚乙二醇单甲醚硫醇(PEG-SH)接枝到 SiO(2) 微球上的 AuNP 层上后,微球在溶液中的分散性得到了增强。透射电子显微镜(TEM)和扫描电子显微镜(SEM)图像显示,这些 SiO(2)@AuNP@PEG 微球具有芝麻球状结构。我们将这些 SiO(2)@AuNP 微球的水相分散体封装在三明治结构显示器(SSD)中,以研究它们的电流变性能,观察到理想适用于显示应用的可逆电响应透射率。AuNP 层厚度的增加显著增强了 SiO(2) 微球的串珠行为,导致 SSD 的透射率增加。SiO(2) 用 AuNP 层修饰后,电流变流体的响应时间也显著缩短。这些复合材料的有效介电常数可以根据 Clausius-Mossotti 公式的实部(έ)和虚部(έ́)来预测。