Suppr超能文献

利用数据挖掘技术探索表观遗传学信息的模式。

Exploring patterns of epigenetic information with data mining techniques.

机构信息

Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, S/N, 15071 A Coruña, Spain.

出版信息

Curr Pharm Des. 2013;19(4):779-89.

Abstract

Data mining, a part of the Knowledge Discovery in Databases process (KDD), is the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management. Analyses of epigenetic data have evolved towards genome-wide and high-throughput approaches, thus generating great amounts of data for which data mining is essential. Part of these data may contain patterns of epigenetic information which are mitotically and/or meiotically heritable determining gene expression and cellular differentiation, as well as cellular fate. Epigenetic lesions and genetic mutations are acquired by individuals during their life and accumulate with ageing. Both defects, either together or individually, can result in losing control over cell growth and, thus, causing cancer development. Data mining techniques could be then used to extract the previous patterns. This work reviews some of the most important applications of data mining to epigenetics.

摘要

数据挖掘是数据库知识发现(KDD)过程的一部分,它是通过将统计学和人工智能方法与数据库管理相结合,从大型数据集提取模式的过程。表观遗传学数据分析已经朝着全基因组和高通量方法发展,从而产生了大量的数据,这些数据对数据挖掘至关重要。这些数据的一部分可能包含可遗传的表观遗传信息模式,这些模式决定着基因表达和细胞分化以及细胞命运。表观遗传损伤和基因突变是个体在其一生中获得的,并随着年龄的增长而积累。这两种缺陷,无论是单独还是共同作用,都可能导致对细胞生长失去控制,从而导致癌症的发生。数据挖掘技术可以用来提取以前的模式。本文综述了数据挖掘在表观遗传学中的一些重要应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验