Suppr超能文献

估计患病率:一场信心博弈。

Estimating prevalence: a confidence game.

作者信息

Zelmer Derek A

机构信息

Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina 29801, USA.

出版信息

J Parasitol. 2013 Apr;99(2):386-9. doi: 10.1645/GE-3168.1. Epub 2012 Sep 27.

Abstract

Prevalence is one of the few estimates that rarely are reported with an appropriate measure of error in the parasitological literature. A minimum sample size recommendation of 15 samples, based on the relationship between sample size and standard error, likely has led to a false degree of confidence because of the nonlinear relationship between standard error and "true" 95% confidence intervals (as determined by Monte Carlo simulation or integration of the Bayesian posterior). Given that 95% confidence intervals for proportions are influenced by both sample size and the actual estimate of the proportion, there is no "gold standard" sample size beyond which estimates of binomial proportions can be considered "reliable." This necessitates the reporting of confidence interval estimates that have been shown to be conservative, such as the Clopper-Pearson estimate, or robust, such as the Wilson score approximation, or the computationally intensive integration of the Bayesian posterior.

摘要

患病率是寄生虫学文献中少数很少以适当误差度量进行报告的估计值之一。基于样本量与标准误差之间的关系,建议的最小样本量为15个样本,由于标准误差与“真实”95%置信区间之间的非线性关系(由蒙特卡罗模拟或贝叶斯后验积分确定),这可能导致了一种错误的置信度。鉴于比例的95%置信区间受样本量和比例实际估计值两者的影响,不存在一个“金标准”样本量,超过该样本量二项比例的估计就可被认为是“可靠的”。这就需要报告已被证明是保守的置信区间估计值,如克洛普-皮尔逊估计值,或稳健的估计值,如威尔逊得分近似值,或贝叶斯后验的计算密集型积分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验