Suppr超能文献

聚二甲基硅氧烷微芯片中使用离子型、非离子型和两性离子型表面活性剂混合物的电泳分离。

Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants.

机构信息

Department of Chemistry, Colorado State University, Fort Collins, CO, USA.

出版信息

Electrophoresis. 2012 Sep;33(18):2875-83. doi: 10.1002/elps.201200255.

Abstract

The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X-100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X-100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X-100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K(+) was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples.

摘要

本文报道了使用表面活性剂混合物来影响 PDMS 基底电泳中的 EOF 和分离选择性,并引入了电容耦合非接触式电导检测来测量 PDMS 微芯片上的 EOF。首先,测量了两种非离子型表面活性剂(吐温 20 和 Triton X-100)、混合离子/非离子表面活性剂体系(SDS/吐温 20 和 SDS/Triton X-100)以及首次混合两性离子/非离子表面活性剂体系(TDAPS/吐温 20 和 TDAPS/Triton X-100)的 EOF。非离子型表面活性剂的 EOF 随表面活性剂浓度的增加而降低。向非离子表面活性剂中添加 SDS 或 TDAPS 会增加 EOF。在建立 EOF 行为后,探索了模型儿茶酚胺的分离,以显示其对分离的影响。与单一表面活性剂体系相比,含有吐温 20 和 TDAPS 的混合表面活性剂体系实现了类似的分析物分辨率和更高的峰高。最后,通过用 80 mM K(+) 刺激来检测 PC12 细胞中儿茶酚胺的释放,证明了混合表面活性剂体系在复杂样品中分离生物化合物的有用性。

相似文献

5
Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips.
Electrophoresis. 2005 Feb;26(3):703-9. doi: 10.1002/elps.200410290.
7
Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions.
Chemosphere. 2005 Jan;58(1):33-40. doi: 10.1016/j.chemosphere.2004.08.067.
8
Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant.
Water Res. 2008 Jan;42(1-2):101-8. doi: 10.1016/j.watres.2007.07.021. Epub 2007 Jul 26.
9
Physicochemical and antibacterial properties of surfactant mixtures with quaternized chitosan microgels.
Carbohydr Polym. 2013 Apr 2;93(2):709-17. doi: 10.1016/j.carbpol.2012.12.054. Epub 2012 Dec 27.

引用本文的文献

1
Isolation of target DNA using synergistic magnetic bead transport and electrokinetic flow.
Biomicrofluidics. 2021 Mar 17;15(2):024104. doi: 10.1063/5.0045307. eCollection 2021 Mar.
3
Micro total analysis systems: fundamental advances and biological applications.
Anal Chem. 2014 Jan 7;86(1):95-118. doi: 10.1021/ac403688g. Epub 2013 Dec 13.

本文引用的文献

2
Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.
Analyst. 2011 Aug 7;136(15):3177-84. doi: 10.1039/c1an15335h. Epub 2011 Jun 22.
3
Contactless conductivity detection for capillary electrophoresis.
Anal Chem. 1998 Feb 1;70(3):563-7. doi: 10.1021/ac9707592.
4
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
8
Improving MCE with electrochemical detection using a bubble cell and sample stacking techniques.
Electrophoresis. 2009 Oct;30(19):3339-46. doi: 10.1002/elps.200900316.
10
Electrode array detector for microchip capillary electrophoresis.
Analyst. 2009 Mar;134(3):486-92. doi: 10.1039/b816289a. Epub 2008 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验