Laboratory of Populations, The Rockefeller University and Columbia University, New York, NY 10065, USA.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15829-34. doi: 10.1073/pnas.1212883109. Epub 2012 Sep 10.
Two widely tested empirical patterns in ecology are combined here to predict how the variation of population density relates to the average body size of organisms. Taylor's law (TL) asserts that the variance of the population density of a set of populations is a power-law function of the mean population density. Density-mass allometry (DMA) asserts that the mean population density of a set of populations is a power-law function of the mean individual body mass. Combined, DMA and TL predict that the variance of the population density is a power-law function of mean individual body mass. We call this relationship "variance-mass allometry" (VMA). We confirmed the theoretically predicted power-law form and the theoretically predicted parameters of VMA, using detailed data on individual oak trees (Quercus spp.) of Black Rock Forest, Cornwall, New York. These results connect the variability of population density to the mean body mass of individuals.
这里结合了生态学中两种经过广泛测试的经验模式,以预测种群密度的变化如何与生物体的平均体型相关。泰勒定律(TL)断言,一组种群的种群密度方差是种群平均密度的幂律函数。密度-质量异速生长(DMA)断言,一组种群的平均种群密度是平均个体体重的幂律函数。DMA 和 TL 的组合预测种群密度的方差是平均个体体重的幂律函数。我们将这种关系称为“方差-质量异速生长”(VMA)。我们使用纽约康沃尔郡黑岩森林的详细个体橡树(Quercus spp.)数据,证实了 VMA 的理论预测幂律形式和理论预测参数。这些结果将种群密度的可变性与个体的平均体重联系起来。