Suppr超能文献

偏态分布的随机抽样意味着泰勒波动尺度幂律。

Random sampling of skewed distributions implies Taylor's power law of fluctuation scaling.

作者信息

Cohen Joel E, Xu Meng

机构信息

Laboratory of Populations, Rockefeller University and Columbia University, New York, NY 10065; and

Laboratory of Populations, Rockefeller University and Columbia University, New York, NY 10065; and Department of Mathematics and Physics, University of New Haven, West Haven, CT 06516.

出版信息

Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7749-54. doi: 10.1073/pnas.1503824112. Epub 2015 Apr 7.

Abstract

Taylor's law (TL), a widely verified quantitative pattern in ecology and other sciences, describes the variance in a species' population density (or other nonnegative quantity) as a power-law function of the mean density (or other nonnegative quantity): Approximately, variance = a(mean)(b), a > 0. Multiple mechanisms have been proposed to explain and interpret TL. Here, we show analytically that observations randomly sampled in blocks from any skewed frequency distribution with four finite moments give rise to TL. We do not claim this is the only way TL arises. We give approximate formulae for the TL parameters and their uncertainty. In computer simulations and an empirical example using basal area densities of red oak trees from Black Rock Forest, our formulae agree with the estimates obtained by least-squares regression. Our results show that the correlated sampling variation of the mean and variance of skewed distributions is statistically sufficient to explain TL under random sampling, without the intervention of any biological or behavioral mechanisms. This finding connects TL with the underlying distribution of population density (or other nonnegative quantity) and provides a baseline against which more complex mechanisms of TL can be compared.

摘要

泰勒定律(TL)是生态学和其他学科中一个经过广泛验证的定量模式,它将物种种群密度(或其他非负数量)的方差描述为平均密度(或其他非负数量)的幂律函数:大致来说,方差=a(均值)^(b),其中a>0。人们已经提出多种机制来解释和阐释泰勒定律。在此,我们通过分析表明,从任何具有四个有限矩的偏态频率分布中按块随机抽样得到的观测值会产生泰勒定律。我们并非声称这是产生泰勒定律的唯一方式。我们给出了泰勒定律参数及其不确定性(的估计)的近似公式。在计算机模拟以及一个使用来自黑岩森林的红橡树基部面积密度的实证例子中,我们的公式与通过最小二乘法回归得到的估计值一致。我们的结果表明,在随机抽样情况下,偏态分布的均值和方差的相关抽样变化在统计学上足以解释泰勒定律,而无需任何生物或行为机制的干预。这一发现将泰勒定律与种群密度(或其他非负数量)的基础分布联系起来,并提供了一个可用于比较泰勒定律更复杂机制的基线。

相似文献

1
3
Taylor's power law of fluctuation scaling and the growth-rate theorem.泰勒波动标度幂律与增长率定理。
Theor Popul Biol. 2013 Sep;88:94-100. doi: 10.1016/j.tpb.2013.04.002. Epub 2013 May 17.
4
Synchrony affects Taylor's law in theory and data.同步现象在理论和数据上都影响了泰勒法则。
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6788-6793. doi: 10.1073/pnas.1703593114. Epub 2017 May 30.
5
Proximate determinants of Taylor's law slopes.泰勒法则斜率的近因决定因素。
J Anim Ecol. 2019 Mar;88(3):484-494. doi: 10.1111/1365-2656.12931. Epub 2019 Jan 22.
7
Sample and population exponents of generalized Taylor's law.广义泰勒定律的样本和总体指数。
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7755-60. doi: 10.1073/pnas.1505882112. Epub 2015 May 4.

引用本文的文献

4

本文引用的文献

5
Taylor's power law of fluctuation scaling and the growth-rate theorem.泰勒波动标度幂律与增长率定理。
Theor Popul Biol. 2013 Sep;88:94-100. doi: 10.1016/j.tpb.2013.04.002. Epub 2013 May 17.
10
Taylor's power law and fluctuation scaling explained by a central-limit-like convergence.泰勒幂定律和波动标度由类中心极限收敛解释。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066115. doi: 10.1103/PhysRevE.83.066115. Epub 2011 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验