Suppr超能文献

用幂律评估和解释宏基因组异质性

Assessing and Interpreting the Metagenome Heterogeneity With Power Law.

作者信息

Ma Zhanshan Sam

机构信息

Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.

出版信息

Front Microbiol. 2020 May 6;11:648. doi: 10.3389/fmicb.2020.00648. eCollection 2020.

Abstract

There are two major sequencing technologies for investigating the microbiome: the amplicon sequencing that generates the OTU (operational taxonomic unit) tables of marker genes (e.g., bacterial 16S-rRNA), and the metagenomic shotgun sequencing that generates metagenomic gene abundance (MGA) tables. The OTU table is the counterpart of species abundance tables in macrobial ecology of plants and animals, and has been the target of numerous ecological and network analyses in recent gold rush for microbiome research and in great efforts for establishing an inclusive theoretical ecology. Nevertheless, MGA analyses have been largely limited to bioinformatics pipelines and statistical methods, and systematic approaches to MGAs guided by classic ecological theories are still few. Here, we argue that, the difference between "gene kinds" and "gene species" are nominal, and the metagenome that a microbiota carries is essentially a 'community' of metagenomic genes (MGs). Each row of a MGA table represents a metagenome of a microbiota, and the whole MGA table represents a 'meta-metagenome' (or an assemblage of metagenomes) of microbiotas (microbiome samples). Consequently, the same ecological/network analyses used in OTU analyses should be equally applicable to MGA tables. Here we choose to analyze the heterogeneity of metagenome by introducing classic Taylor's power law (TPL) and its recent extensions in community ecology. Heterogeneity is a fundamental property of metagenome, particularly in the context of human microbiomes. Recent studies have shown that the heterogeneity of human metagenomes is far more significant than that of human genomes. Therefore, without deep understanding of the human metagenome heterogeneity, personalized medicine of the human microbiome-associated diseases is hardly feasible. The TPL extensions have been successfully applied to measure the heterogeneity of human microbiome based on amplicon-sequencing reads of marker genes (e.g., 16s-rRNA). In this article, we demonstrate the analysis of the metagenomic heterogeneity of human gut microbiome at whole metagenome scale (with type-I power law extension) and metagenomic gene scale (type-III), as well as the heterogeneity of gene clusters, respectively. We further examine the influences of obesity, IBD and diabetes on the heterogeneity, which is of important ramifications for the diagnosis and treatment of human microbiome-associated diseases.

摘要

用于研究微生物组的主要测序技术有两种

扩增子测序,可生成标记基因(如细菌16S - rRNA)的OTU(操作分类单元)表;宏基因组鸟枪法测序,可生成宏基因组基因丰度(MGA)表。OTU表相当于动植物宏观生物生态学中物种丰度表的对应物,在近期微生物组研究热潮以及为建立全面理论生态学所做的巨大努力中,一直是众多生态和网络分析的对象。然而,MGA分析在很大程度上局限于生物信息学流程和统计方法,由经典生态理论指导的MGA系统方法仍然很少。在此,我们认为,“基因种类”和“基因物种”之间的差异是名义上的,微生物群携带的宏基因组本质上是一个宏基因组基因(MG)的“群落”。MGA表的每一行代表一个微生物群的宏基因组,整个MGA表代表微生物群(微生物组样本)的“元宏基因组”(或宏基因组的集合)。因此,OTU分析中使用的相同生态/网络分析应该同样适用于MGA表。在此,我们选择通过引入群落生态学中的经典泰勒幂定律(TPL)及其最近的扩展来分析宏基因组的异质性。异质性是宏基因组的一个基本属性,特别是在人类微生物组的背景下。最近的研究表明,人类宏基因组的异质性远比人类基因组的异质性显著得多。因此,不深入了解人类宏基因组异质性,人类微生物组相关疾病的个性化医疗几乎是不可行的。TPL扩展已成功应用于基于标记基因(如16s - rRNA)的扩增子测序读数来测量人类微生物组的异质性。在本文中,我们分别展示了在全宏基因组规模(使用I型幂定律扩展)、宏基因组基因规模(III型)以及基因簇异质性方面对人类肠道微生物组宏基因组异质性的分析。我们进一步研究了肥胖、炎症性肠病和糖尿病对异质性的影响,这对人类微生物组相关疾病的诊断和治疗具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/7218080/382bf20d8cff/fmicb-11-00648-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验