Suppr超能文献

[用于监测中药生产过程的多阶段多元统计质量控制(MMSQC)]

[Multistage multivariate statistic quality control (MMSQC) for monitoring production process of traditional Chinese medicines].

作者信息

Xiong Haoshu, Fu Ying, Nie Jing, Qu Haibin

机构信息

College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.

出版信息

Zhongguo Zhong Yao Za Zhi. 2012 Jul;37(13):1935-41.

Abstract

OBJECTIVE

To establish a method for monitoring the quality of intermediates generated in each working procedure during the production process of traditional Chinese medicine (TCM) , in order to ensure the batch-to-batch quality consistency of TCM products.

METHOD

The multistage multivariate statistic quality control (MMSQC) was proposed to monitor production quality of TCMs based on multivariate data analysis technique. Hotelling T2 and SPE were adopted for monitoring the quality of intermediates generated in each working procedure. Danshen injection was taken as the example to introduce the application method of MMSQC.

RESULT

MMSQC can monitor the quality of intermediates generated in multiple working procedures, which is simpler and more accurate compared with single-indicator monitoring method.

CONCLUSION

MMSQC can be popularized to monitor quality of multistage production of TCMs.

摘要

目的

建立一种用于监测中药生产过程中各工序中间体质量的方法,以确保中药产品批间质量的一致性。

方法

基于多元数据分析技术,提出多级多元统计质量控制(MMSQC)方法来监测中药生产质量。采用霍特林T2和SPE对各工序产生的中间体质量进行监测。以丹参注射液为例介绍MMSQC的应用方法。

结果

MMSQC可对多个工序产生的中间体质量进行监测,与单指标监测方法相比,更简单、准确。

结论

MMSQC可推广应用于中药多工序生产的质量监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验