Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.
Langmuir. 2012 Oct 30;28(43):15222-32. doi: 10.1021/la3030364. Epub 2012 Oct 18.
The adsorption of cellulose-derived long-chain (longer than ten glucose repeat units on size) glucans onto carbon-based acid catalysts for hydrolysis has long been hypothesized; however, to date, there is no information on whether such adsorption can occur and how glucan chain length influences adsorption. Herein, in this manuscript, we first describe how glucan chain length influences adsorption energetics, and use this to understand the adsorption of long-chain glucans onto mesoporous carbon nanoparticles (MCN) from a concentrated acid solution, and the effect of mesoporosity on this process. Our results conclusively demonstrate that mesoporous carbon nanoparticle (MCN) materials adsorb long-chain glucans from concentrated acid hydrolyzate in amounts of up to 30% by mass (303 mg/g of MCN), in a manner that causes preferential adsorption of longer-chain glucans of up to 40 glucose repeat units and, quite unexpectedly, fast adsorption equilibration times of less than 4 min. In contrast, graphite-type carbon nanopowders (CNP) that lack internal mesoporosity adsorb glucans in amounts less than 1% by mass (7.7 mg/g of CNP), under similar conditions. This inefficiency of glucan adsorption on CNP might be attributed to the lack of internal mesoporosity, since the CNP actually possesses greater external surface area relative to MCN. A systematic study of adsorption of glucans in the series glucose to cellotetraose on MCN shows a monotonically decreasing free energy of adsorption upon increasing the glucan chain length. The free energy of adsorption decreases by at least 0.4 kcal/mol with each additional glucose unit in this series, and these energetics are consistent with CH-π interactions providing a significant energetic contribution for adsorption, similar to previous observations in glycoproteins. HPLC of hydrolyzed fragments in solution, (13)C Bloch decay NMR spectroscopy, and GPC provide material balance closure of adsorbed glucan coverages on MCN materials. The latter and MALDI-TOF-MS provide direct evidence for adsorption of long-chain glucans on the MCN surface, which have a radius of gyration larger than the pore radius of the MCN material.
纤维素衍生的长链(超过十个葡萄糖重复单元)聚糖在水解过程中吸附到碳基酸催化剂上的现象一直被假设存在;然而,迄今为止,尚无关于这种吸附是否能够发生以及聚糖链长如何影响吸附的信息。在此,在本手稿中,我们首先描述了聚糖链长如何影响吸附能,并用其来理解长链聚糖从浓酸溶液中吸附到介孔碳纳米粒子(MCN)上的情况,以及介孔性对这一过程的影响。我们的研究结果明确表明,介孔碳纳米粒子(MCN)材料能够从浓酸水解物中吸附高达 30%质量的长链聚糖(MCN 材料的 303mg/g),这种吸附方式导致了长达 40 个葡萄糖重复单元的长链聚糖优先吸附,而且出人意料的是,吸附平衡时间不到 4 分钟。相比之下,在类似条件下,缺乏内部介孔性的石墨型碳纳米粉末(CNP)的吸附量不到 1%质量(CNP 的 7.7mg/g)。这种 CNP 上聚糖吸附效率低下可能归因于缺乏内部介孔性,因为 CNP 实际上相对于 MCN 具有更大的外比表面积。在 MCN 上对葡萄糖至纤维四糖的这一系列聚糖的吸附进行系统研究表明,随着聚糖链长的增加,吸附的自由能呈单调递减。在这个系列中,每增加一个葡萄糖单元,吸附自由能至少降低 0.4 千卡/摩尔,这些能量与 CH-π 相互作用为吸附提供了显著的能量贡献是一致的,类似于在糖蛋白中观察到的情况。溶液中水解片段的 HPLC、(13)C Bloch 衰减 NMR 光谱和 GPC 为 MCN 材料上吸附的聚糖覆盖率提供了物料平衡闭合。后者和 MALDI-TOF-MS 提供了长链聚糖在 MCN 表面吸附的直接证据,这些聚糖的转动半径大于 MCN 材料的孔径。