Suppr超能文献

利用人工智能预测预约就诊情况。

Predicting scheduled hospital attendance with artificial intelligence.

作者信息

Nelson Amy, Herron Daniel, Rees Geraint, Nachev Parashkev

机构信息

1Institute of Neurology, UCL, London, WC1N 3BG UK.

2NIHR UCLH Biomedical Research Centre, Research & Development, Maple House Suite A 1st Floor, 149 Tottenham Court Road, London, W1T 7DN UK.

出版信息

NPJ Digit Med. 2019 Apr 12;2:26. doi: 10.1038/s41746-019-0103-3. eCollection 2019.

Abstract

Failure to attend scheduled hospital appointments disrupts clinical management and consumes resource estimated at £1 billion annually in the United Kingdom National Health Service alone. Accurate stratification of absence risk can maximize the yield of preventative interventions. The wide multiplicity of potential causes, and the poor performance of systems based on simple, linear, low-dimensional models, suggests complex predictive models of attendance are needed. Here, we quantify the effect of using complex, non-linear, high-dimensional models enabled by machine learning. Models systematically varying in complexity based on logistic regression, support vector machines, random forests, AdaBoost, or gradient boosting machines were trained and evaluated on an unselected set of 22,318 consecutive scheduled magnetic resonance imaging appointments at two UCL hospitals. High-dimensional Gradient Boosting Machine-based models achieved the best performance reported in the literature, exhibiting an area under the receiver operating characteristic curve of 0.852 and average precision of 0.511. Optimal predictive performance required 81 variables. Simulations showed net potential benefit across a wide range of attendance characteristics, peaking at £3.15 per appointment at current prevalence and call efficiency. Optimal attendance prediction requires more complex models than have hitherto been applied in the field, reflecting the complex interplay of patient, environmental, and operational causal factors. Far from an exotic luxury, high-dimensional models based on machine learning are likely essential to optimal scheduling amongst other operational aspects of hospital care. High predictive performance is achievable with data from a single institution, obviating the need for aggregating large-scale sensitive data across governance boundaries.

摘要

未能按时赴医院预约会扰乱临床管理,仅在英国国家医疗服务体系中,每年就消耗约10亿英镑的资源。准确分层缺席风险可使预防性干预措施的效果最大化。潜在原因繁多,基于简单、线性、低维模型的系统表现不佳,这表明需要复杂的就诊预测模型。在此,我们量化了使用机器学习实现的复杂、非线性、高维模型的效果。基于逻辑回归、支持向量机、随机森林、AdaBoost或梯度提升机构建的复杂度系统变化的模型,在伦敦大学学院两所医院连续22318例未筛选的预定磁共振成像预约数据集上进行了训练和评估。基于高维梯度提升机的模型取得了文献报道的最佳性能,受试者工作特征曲线下面积为0.852,平均精度为0.511。最佳预测性能需要81个变量。模拟显示,在广泛的就诊特征范围内都有潜在净收益,在当前患病率和呼叫效率下,每次预约的峰值收益为3.15英镑。最佳就诊预测需要比该领域迄今应用的模型更复杂的模型,这反映了患者、环境和操作因果因素之间复杂的相互作用。基于机器学习的高维模型绝非奇特的奢侈品,对于医院护理的其他运营方面的优化调度可能至关重要。仅使用单个机构的数据就能实现高预测性能,无需跨管理边界汇总大规模敏感数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7499/6550247/03328793f64a/41746_2019_103_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验