Suppr超能文献

基于计算糖组学预测的 MUC1 糖肽表位。

MUC1 glycopeptide epitopes predicted by computational glycomics.

机构信息

Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Int J Oncol. 2012 Dec;41(6):1977-84. doi: 10.3892/ijo.2012.1645. Epub 2012 Sep 27.

Abstract

Bioinformatic tools and databases for glycobiology and glycomics research are playing increasingly important roles in functional studies. However, to verify hypotheses generated by computational glycomics with empirical functional assays is only an emerging field. In this study, we predicted glycan epitopes expressed by a cancer-derived mucin, MUC1, by computational glycomics. MUC1 is expressed by tumor cells with a deficiency in glycosylation. Although numerous diagnostic reagents and cancer vaccines have been designed based on abnormally glycosylated MUC1 sequences, the glycan and peptide sequences responsible for immune responses in vivo are poorly understood. The immunogenicity of synthetic MUC1 glycopeptides bearing Tn or sialyl-Tn antigens have been studied in mouse models, while authentic glyco-epitopes expressed by tumor cells remain unclear. To examine the immunogenicity of authentic cancer derived MUC1 glyco-epitopes, we expressed membrane bound forms of MUC1 tandem repeats in Jurkat, a mutant cancer cell line deficient of mucin-type core-1 β1-3 galactosyltransferase activity, and immunized mice with cancer cells expressing authentic MUC1 glyco-epitopes. Antibody responses to individual glyco-epitopes were determined by chemically synthesized candidate MUC1 glycopeptides predicted through computational glycomics. Monoclonal antibodies can be generated toward chemically synthesized glycopeptide sequences. With RPAPGS(Tn)TAPPAHG as an example, a monoclonal antibody 16A, showed 25-fold higher binding to glycosylated peptide (EC50=9.278±1.059 ng/ml) compared to its non-glycosylated form (EC(50)=247.3±16.29 ng/ml) as measured by ELISA experiments with plate-bound peptides. A library of monoclonal antibodies toward authentic MUC1 glycopeptide epitopes may be a valuable tool for studying glycan and peptide sequences in cancer, as well as reagents for diagnosis and therapy.

摘要

生物信息学工具和数据库在糖生物学和糖组学研究中发挥着越来越重要的作用,尤其是在功能研究方面。然而,用经验性功能测定来验证计算糖组学产生的假说,这只是一个新兴领域。在这项研究中,我们通过计算糖组学预测了一种癌症衍生粘蛋白 MUC1 表达的聚糖表位。MUC1 由糖基化缺陷的肿瘤细胞表达。尽管已经设计了许多基于异常糖基化 MUC1 序列的诊断试剂和癌症疫苗,但体内免疫反应的聚糖和肽序列仍知之甚少。带有 Tn 或唾液酸-Tn 抗原的合成 MUC1 糖肽的免疫原性已在小鼠模型中进行了研究,而肿瘤细胞表达的真实糖基化表位尚不清楚。为了研究真实的癌症来源的 MUC1 糖基化表位的免疫原性,我们在 Jurkat 中表达了 MUC1 串联重复的膜结合形式,Jurkat 是一种缺乏粘蛋白型核心 1 β1-3 半乳糖基转移酶活性的突变癌细胞系,并使用表达真实 MUC1 糖基化表位的癌细胞对小鼠进行免疫接种。通过化学合成的候选 MUC1 糖肽,通过计算糖组学预测的个体糖基化表位的抗体反应来确定。可以针对化学合成的糖肽序列生成单克隆抗体。以 RPAPGS(Tn)TAPPAHG 为例,单克隆抗体 16A 与糖基化肽的结合能力高 25 倍(EC50=9.278±1.059ng/ml),而与其非糖基化形式相比(EC50=247.3±16.29ng/ml),这是通过 ELISA 实验用板结合肽测量的。针对真实 MUC1 糖肽表位的单克隆抗体文库可能是研究癌症中聚糖和肽序列的有价值工具,也是诊断和治疗的试剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fe7/3583844/7b0ae6a591fe/IJO-41-06-1977-g00.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验