Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, China.
Dalton Trans. 2012 Dec 7;41(45):13899-907. doi: 10.1039/c2dt31618h. Epub 2012 Sep 28.
Two [FeFe] hydrogenase mimics, [Fe(2)(μ-pdt)(CO)(5)L1] (L1 = PPh(2)SPhNH(2)) (Ph = phenyl) (2) and [Fe(2)(μ-pdt)(CO)(5)L2] (L2 = PPh(2)PhNH(2)) (3), and two molecular photocatalysts, [(CO)(5)(μ-pdt)Fe(2)PPh(2)SPhNHCO(bpy)(ppy)(2)Ir]PF(6) (bpy = bipyridine, ppy = 2-phenylpyridine) (2a) and (CO)(5)(μ-pdt)Fe(2)PPh(2)PhNHCO(bpy)(ppy)(2)Ir (3a), have been designed and synthesized, anchoring Ir(ppy)(2)(mbpy)PF(6) (mbpy = 4-methyl-4'-carbonyl-2,2'-bipyridine) (PS) to one of the iron centers of complexes 2 and 3 by forming amide bonds. Molecular dyads 2a, 3a and the intermolecular systems 2, 3 with PS have also been successfully constructed for photoinduced H(2) production using triethylamine (TEA) as a sacrificial electron donor by visible light (>400 nm) in CH(3)CN-H(2)O solution. The time-dependence of H(2) generation and spectroscopic studies suggest that the activity of H(2) evolution can be tuned by addition of a S atom to the phosphane ligand. The highest turnover numbers (TON) of hydrogen evolution obtained are 127, using 2a as a photocatalyst in a supramolecular system, and 138, based on catalyst 2 in a multi-component system. Density functional theory (DFT) computational studies demonstrate that the S atom in the second coordination sphere makes complex 2 accept an electron more easily than 3 and improves the activity in light-induced hydrogen production.
两种[FeFe]氢化酶模拟物,[Fe(2)(μ-pdt)(CO)(5)L1](L1=PPh(2)SPhNH(2))(Ph=苯基)(2)和[Fe(2)(μ-pdt)(CO)(5)L2](L2=PPh(2)PhNH(2))(3),以及两种分子光催化剂,[(CO)(5)(μ-pdt)Fe(2)PPh(2)SPhNHCO(bpy)(ppy)(2)Ir]PF(6)(bpy=联吡啶,ppy=2-苯基吡啶)(2a)和(CO)(5)(μ-pdt)Fe(2)PPh(2)PhNHCO(bpy)(ppy)(2)Ir(3a),已被设计和合成,通过形成酰胺键将 Ir(ppy)(2)(mbpy)PF(6)(mbpy=4-甲基-4'-羰基-2,2'-联吡啶)(PS)锚定到复合物 2 和 3 的一个铁中心上。通过可见光(>400nm)在 CH(3)CN-H(2)O 溶液中,成功构建了分子偶联物 2a、3a 和含有 PS 的分子间体系 2、3,以三乙胺(TEA)作为牺牲电子供体进行光诱导 H(2)产生。H(2)生成的时间依赖性和光谱研究表明,通过向膦配体中添加一个 S 原子,可以调节 H(2)演化的活性。使用 2a 作为光催化剂的超分子体系中获得的最高氢转化数(TON)为 127,基于多组分体系中的 2 为催化剂的 TON 为 138。密度泛函理论(DFT)计算研究表明,第二配位球中的 S 原子使配合物 2 比 3 更容易接受电子,从而提高了光诱导制氢的活性。