Suppr超能文献

分子模拟在 NiO(100)表面的气体吸附。

Molecular simulation for gas adsorption at NiO (100) surface.

机构信息

Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden.

出版信息

ACS Appl Mater Interfaces. 2012 Oct 24;4(10):5691-7. doi: 10.1021/am3016894. Epub 2012 Oct 12.

Abstract

Density functional theory (DFT) calculations have been employed to explore the gas-sensing mechanisms of NiO (100) surface on the basis of energetic and electronic properties. We have calculated the adsorption energies of NO(2), H(2)S, and NH(3) molecules on NiO (100) surface using GGA+U method. The calculated results suggest that the interaction of NO(2) molecule with NiO surface becomes stronger and contributes more extra peaks within the band gap as the coverage increases. The band gap of H(2)S-adsorbed systems decrease with the increase in coverage up to 0.5 ML and the band gap does not change at 1 ML because H(2)S molecules are repelled from the surface. In case of NH(3) molecular adsorption, the adsorption energy has been increased with the increase in coverage and the band gap is directly related to the adsorption energy. Charge transfer mechanism between the gas molecule and the NiO surface has been illustrated by the Bader analysis and plotting isosurface charge distribution. It is also found that that work function of the surfaces shows different behavior with different adsorbed gases and their coverage. The work function of NO(2) gas adsorption has a hill-shaped behavior, whereas H(2)S adsorption has a valley-shaped behavior. The work function of NH(3) adsorption decreases with the increase in coverage. On the basis of our calculations, we can have a better understanding of the gas-sensing mechanism of NiO (100) surface toward NO(2), H(2)S, and NH(3) gases.

摘要

密度泛函理论(DFT)计算已被用于基于能量和电子性质来探索 NiO(100)表面的气体传感机制。我们使用 GGA+U 方法计算了 NO(2)、H(2)S 和 NH(3)分子在 NiO(100)表面上的吸附能。计算结果表明,随着覆盖度的增加,NO(2)分子与 NiO 表面的相互作用变得更强,并在能带隙内贡献更多的额外峰。H(2)S 吸附体系的能带隙随着覆盖度的增加而减小,直到 0.5 ML 为止,而在 1 ML 时则不变,因为 H(2)S 分子被排斥出表面。对于 NH(3)分子的吸附,吸附能随覆盖度的增加而增加,并且能带隙直接与吸附能相关。通过 Bader 分析和绘制等位面电荷分布,说明了气体分子与 NiO 表面之间的电荷转移机制。还发现,表面的功函数随吸附气体及其覆盖度的不同而表现出不同的行为。NO(2)气体吸附的功函数呈山丘状,而 H(2)S 吸附的功函数呈山谷状。NH(3)吸附的功函数随覆盖度的增加而减小。基于我们的计算,可以更好地理解 NiO(100)表面对 NO(2)、H(2)S 和 NH(3)气体的气体传感机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验